HOME
*



picture info

Thirty
30 (thirty) is the natural number following 29 and preceding 31. In mathematics 30 is an even, composite, pronic number. With 2, 3, and 5 as its prime factors, it is a regular number and the first sphenic number, the smallest of the form , where is a prime greater than 3. It has an aliquot sum of 42, which is the second sphenic number. It is also: * A semiperfect number, since adding some subsets of its divisors (e.g., 5, 10 and 15) equals 30. * A primorial. * A Harshad number in decimal. * Divisible by the number of prime numbers ( 10) below it. * The largest number such that all coprimes smaller than itself, except for 1, are prime. * The sum of the first four squares, making it a square pyramidal number. * The number of vertices in the Tutte–Coxeter graph. * The measure of the central angle and exterior angle of a dodecagon, which is the petrie polygon of the 24-cell. * The number of sides of a triacontagon, which in turn is the petrie polygon of the 120-cell an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

31 (number)
31 (thirty-one) is the natural number following 30 and preceding 32. It is a prime number. In mathematics 31 is the 11th prime number. It is a superprime and a self prime (after 3, 5, and 7), as no integer added up to its base 10 digits results in 31. It is a lucky prime and a happy number; two properties it shares with 13, which is its dual emirp and permutable prime. 31 is also a primorial prime, like its twin prime, 29. 31 is the number of regular polygons with an odd number of sides that are known to be constructible with compass and straightedge, from combinations of known Fermat primes of the form 22''n'' + 1. 31 is the third Mersenne prime of the form 2''n'' − 1. It is also the eighth Mersenne prime exponent, specifically for the number 2,147,483,647, which is the maximum positive value for a 32-bit signed binary integer in computing. After 3, it is the second Mersenne prime not to be a double Mersenne prime. 127, which is the 31st prime number, is a doubl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

42 (number)
42 (forty-two) is the natural number that follows 41 (number), 41 and precedes 43 (number), 43. Mathematics Forty-two (42) is a pronic number and an abundant number; its prime factorization (2\times 3\times 7) makes it the second sphenic number and also the second of the form (2\times 3\times r). Additional properties of the number 42 include: * It is the number of isomorphism classes of all simple and oriented directed graphs on 4 vertices. In other words, it is the number of all possible outcomes (up to isomorphism) of a tournament consisting of 4 teams where the game between any pair of teams results in three possible outcomes: the first team wins, the second team wins, or there is a draw. The group stage of the FIFA World cup is a good example. * It is the third primary pseudoperfect number. * It is a Catalan number. Consequently, 42 is the number of noncrossing partitions of a set of five elements, the number of triangulations of a heptagon, the number of rooted ordered bina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




29 (number)
29 (twenty-nine) is the natural number following 28 and preceding 30. Mathematics * 29 is the tenth prime number, and the fourth primorial prime. * 29 forms a twin prime pair with thirty-one, which is also a primorial prime. Twenty-nine is also the sixth Sophie Germain prime. * 29 is the sum of three consecutive squares, 22 + 32 + 42. * 29 is a Lucas prime, a Pell prime, and a tetranacci number. * 29 is an Eisenstein prime with no imaginary part and real part of the form 3n − 1. 29 is also the 10th supersingular prime. * None of the first 29 natural numbers have more than two different prime factors. This is the longest such consecutive sequence. * 29 is a Markov number, appearing in the solutions to ''x'' + ''y'' + ''z'' = 3''xyz'': , , , , etc. * 29 is a Perrin number, preceded in the sequence by 12, 17, 22. * 29 is the smallest positive whole number that cannot be made from the numbers , using each exactly once and using only addition, subtraction, multiplication, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

600-cell
In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from "tetrahedral complex") and a polytetrahedron, being bounded by tetrahedral cells. The 600-cell's boundary is composed of 600 tetrahedral cells with 20 meeting at each vertex. Together they form 1200 triangular faces, 720 edges, and 120 vertices. It is the 4- dimensional analogue of the icosahedron, since it has five tetrahedra meeting at every edge, just as the icosahedron has five triangles meeting at every vertex. Its dual polytope is the 120-cell. Geometry The 600-cell is the fifth in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). It can be deconstructed into twenty-five overlapping instances of its immediate predecessor the 24-cell, as the 24-cell can be deconstructed into three overlapping in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triacontagon
In geometry, a triacontagon or 30-gon is a thirty-sided polygon. The sum of any triacontagon's interior angles is 5040 degrees. Regular triacontagon The ''regular triacontagon'' is a constructible polygon, by an edge- bisection of a regular pentadecagon, and can also be constructed as a truncated pentadecagon, t. A truncated triacontagon, t, is a hexacontagon, . One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°. The triacontagon is the largest regular polygon whose interior angle is the sum of the interior angles of smaller polygons: 168° is the sum of the interior angles of the equilateral triangle (60°) and the regular pentagon (108°). The area of a regular triacontagon is (with ) :A = \frac t^2 \cot \frac = \frac t^2 \left(\sqrt + 3\sqrt + \sqrt\sqrt\right) The inradius of a regular triacontagon is :r = \frac t \cot \frac = \frac t \left(\sqrt + 3\sqrt + \sqrt\sqrt\right) The circumradius of a regular t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex (geometry)
In geometry, a vertex (in plural form: vertices or vertexes) is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. Definition Of an angle The ''vertex'' of an angle is the point where two rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place. :(3 vols.): (vol. 1), (vol. 2), (vol. 3). Of a polytope A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection of edges, faces or facets of the object. In a polygon, a vertex is called " convex" if the internal angle of the polygon (i.e., the angle formed by the two edges at the vertex with the polygon inside the angle) is less than π radians (180°, two right angl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tutte–Coxeter Graph
In the mathematical field of graph theory, the Tutte–Coxeter graph or Tutte eight-cage or Cremona–Richmond graph is a 3-regular graph with 30 vertices and 45 edges. As the unique smallest cubic graph of girth 8, it is a cage and a Moore graph. It is bipartite, and can be constructed as the Levi graph of the generalized quadrangle ''W''2 (known as the Cremona–Richmond configuration). The graph is named after William Thomas Tutte and H. S. M. Coxeter; it was discovered by Tutte (1947) but its connection to geometric configurations was investigated by both authors in a pair of jointly published papers (Tutte 1958; Coxeter 1958a). All the cubic distance-regular graphs are known. The Tutte–Coxeter is one of the 13 such graphs. It has crossing number 13, book thickness 3 and queue number 2.Wolz, Jessica; ''Engineering Linear Layouts with SAT.'' Master Thesis, University of Tübingen, 2018 Constructions and automorphisms A particularly simple combinatorial constructi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Central Angle
A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). The central angle is also known as the arc's angular distance. The arc length spanned by a central angle on a sphere is called '' spherical distance''. The size of a central angle is or (radians). When defining or drawing a central angle, in addition to specifying the points and , one must specify whether the angle being defined is the convex angle (<180°) or the reflex angle (>180°). Equivalently, one must specify whether the movement from point to point is clockwise or counterclockwise. Formulas If the intersection points and of the legs of the angle with the circle form a diameter, then is a straight angle. (In radians, .) Let be the min ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exterior Angle
In geometry, an angle of a polygon is formed by two sides of the polygon that share an endpoint. For a simple (non-self-intersecting) polygon, regardless of whether it is convex or non-convex, this angle is called an interior angle (or ) if a point within the angle is in the interior of the polygon. A polygon has exactly one internal angle per vertex. If every internal angle of a simple polygon is less than π radians (180°), then the polygon is called convex. In contrast, an exterior angle (also called an or turning angle) is an angle formed by one side of a simple polygon and a line extended from an adjacent side.Weisstein, Eric W. "Exterior Angle Bisector." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ExteriorAngleBisector.htmlPosamentier, Alfred S., and Lehmann, Ingmar. '' The Secrets of Triangles'', Prometheus Books, 2012. Properties * The sum of the internal angle and the external angle on the same vertex is π radians (180°). * The sum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal numbers'', and numbers used for ordering are called '' ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports jersey numbers). Some definitions, including the standard ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural numbers form a set. Many other number sets are built by succ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dodecagon
In geometry, a dodecagon or 12-gon is any twelve-sided polygon. Regular dodecagon A regular dodecagon is a figure with sides of the same length and internal angles of the same size. It has twelve lines of reflective symmetry and rotational symmetry of order 12. A regular dodecagon is represented by the Schläfli symbol and can be constructed as a truncated hexagon, t, or a twice-truncated triangle, tt. The internal angle at each vertex of a regular dodecagon is 150°. Area The area of a regular dodecagon of side length ''a'' is given by: :\begin A & = 3 \cot\left(\frac \right) a^2 = 3 \left(2+\sqrt \right) a^2 \\ & \simeq 11.19615242\,a^2 \end And in terms of the apothem ''r'' (see also inscribed figure), the area is: :\begin A & = 12 \tan\left(\frac\right) r^2 = 12 \left(2-\sqrt \right) r^2 \\ & \simeq 3.2153903\,r^2 \end In terms of the circumradius ''R'', the area is: :A = 6 \sin\left(\fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Petrie Polygon
In geometry, a Petrie polygon for a regular polytope of dimensions is a skew polygon in which every consecutive sides (but no ) belongs to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a regular polyhedron is a skew polygon such that every two consecutive sides (but no three) belongs to one of the faces. Petrie polygons are named for mathematician John Flinders Petrie. For every regular polytope there exists an orthogonal projection onto a plane such that one Petrie polygon becomes a regular polygon with the remainder of the projection interior to it. The plane in question is the Coxeter plane of the symmetry group of the polygon, and the number of sides, , is the Coxeter number of the Coxeter group. These polygons and projected graphs are useful in visualizing symmetric structure of the higher-dimensional regular polytopes. Petrie polygons can be defined more generally for any embedded graph. They form the faces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]