Terminal Sliding Mode
In the early 1990s, a new type of sliding mode control, named terminal sliding modes (TSM) was invented at the Jet Propulsion Laboratory (JPL) by Venkataraman and Gulati. TSM is robust non-linear control approach. The main idea of terminal sliding mode control evolved out of seminal work on terminal attractors done by Zak in the JPL, and is evoked by the concept of terminal attractors which guarantee finite time convergence of the states. While, in normal sliding mode, asymptotic stability is promised which leads to the convergence of the states to the origin. But this convergence may only be guaranteed within infinite time. In TSM, a nonlinear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ... term is introduced in the sliding surface design so that the manifold is formulated a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sliding Mode Control
In control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces the system to "slide" along a cross-section of the system's normal behavior. The state-feedback control law is not a continuous function of time. Instead, it can switch from one continuous structure to another based on the current position in the state space. Hence, sliding mode control is a variable structure control method. The multiple control structures are designed so that trajectories always move toward an adjacent region with a different control structure, and so the ultimate trajectory will not exist entirely within one control structure. Instead, it will ''slide'' along the boundaries of the control structures. The motion of the system as it slides along these boundaries is called a ''sliding mode'' and the geometrical locus consisting of the b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jet Propulsion Laboratory
The Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center in the City of La CaƱada Flintridge, California, United States. Founded in the 1930s by Caltech researchers, JPL is owned by NASA and managed by the nearby California Institute of Technology (Caltech). The laboratory's primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating the NASA Deep Space Network. Among the laboratory's major active projects are the Mars 2020 mission, which includes the '' Perseverance'' rover and the '' Ingenuity'' Mars helicopter; the Mars Science Laboratory mission, including the '' Curiosity'' rover; the InSight lander (''Interior Exploration using Seismic Investigations, Geodesy and Heat Transport''); the ''Mars Reconnaissance Orbiter''; the '' Juno'' spacecraft orbiting Jupiter; the '' SMAP'' satellite for earth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robust Control
In control theory, robust control is an approach to controller design that explicitly deals with uncertainty. Robust control methods are designed to function properly provided that uncertain parameters or disturbances are found within some (typically compact) set. Robust methods aim to achieve robust performance and/or stability in the presence of bounded modelling errors. The early methods of Bode and others were fairly robust; the state-space methods invented in the 1960s and 1970s were sometimes found to lack robustness, prompting research to improve them. This was the start of the theory of robust control, which took shape in the 1980s and 1990s and is still active today. In contrast with an adaptive control policy, a robust control policy is static, rather than adapting to measurements of variations, the controller is designed to work assuming that certain variables will be unknown but bounded. (Section 1.5) In German; an English version is also available Criteria for robustn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonlinear Control
Nonlinear control theory is the area of control theory which deals with systems that are nonlinear, time-variant, or both. Control theory is an interdisciplinary branch of engineering and mathematics that is concerned with the behavior of dynamical systems with inputs, and how to modify the output by changes in the input using feedback, feedforward, or signal filtering. The system to be controlled is called the " plant". One way to make the output of a system follow a desired reference signal is to compare the output of the plant to the desired output, and provide feedback to the plant to modify the output to bring it closer to the desired output. Control theory is divided into two branches. Linear control theory applies to systems made of devices which obey the superposition principle. They are governed by linear differential equations. A major subclass is systems which in addition have parameters which do not change with time, called '' linear time invariant'' (L ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lyapunov Stability
Various types of stability may be discussed for the solutions of differential equations or difference equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov. In simple terms, if the solutions that start out near an equilibrium point x_e stay near x_e forever, then x_e is Lyapunov stable. More strongly, if x_e is Lyapunov stable and all solutions that start out near x_e converge to x_e, then x_e is asymptotically stable. The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability (ISS) applies Lyapunov notions to systems with inpu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonlinear
In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists because most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems. Typically, the behavior of a nonlinear system is described in mathematics by a nonlinear system of equations, which is a set of simultaneous equations in which the unknowns (or the unknown functions in the case of differential equations) appear as variables of a polynomial of degree higher than one or in the argument of a function which is not a polynomial of degree one. In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fundamental Theory And Applications
Fundamental may refer to: * Foundation of reality * Fundamental frequency, as in music or phonetics, often referred to as simply a "fundamental" * Fundamentalism, the belief in, and usually the strict adherence to, the simple or "fundamental" ideas based on faith in a system of thought * ''The Fundamentals'', a set of books important to Christian fundamentalism * Any of a number of fundamental theorems identified in mathematics, such as: ** Fundamental theorem of algebra, awe theorem regarding the factorization of polynomials ** Fundamental theorem of arithmetic, a theorem regarding prime factorization * Fundamental analysis, the process of reviewing and analyzing a company's financial statements to make better economic decisions Music * Fun-Da-Mental, a rap group * ''Fundamental'' (Bonnie Raitt album), 1998 * ''Fundamental'' (Pet Shop Boys album) * ''Fundamental'' (Puya album), 1999 * ''Fundamental'' (Mental As Anything album) * ''The Fundamentals'' (album) Other uses * " ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |