Symmedian
In geometry, symmedians are three particular lines associated with every triangle. They are constructed by taking a median of the triangle (a line connecting a vertex with the midpoint of the opposite side), and reflecting the line over the corresponding angle bisector (the line through the same vertex that divides the angle there in half). The angle formed by the symmedian and the angle bisector has the same measure as the angle between the median and the angle bisector, but it is on the other side of the angle bisector. The three symmedians meet at a triangle center called the Lemoine point. Ross Honsberger has called its existence "one of the crown jewels of modern geometry".. Isogonality Many times in geometry, if we take three special lines through the vertices of a triangle, or ''cevians'', then their reflections about the corresponding angle bisectors, called ''isogonal lines'', will also have interesting properties. For instance, if three cevians of a triangle intersec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lemoine Point
In geometry, the Lemoine point, Grebe point or symmedian point is the intersection of the three symmedians ( medians reflected at the associated angle bisectors) of a triangle. In other words, it is the isogonal conjugate of the centroid. Ross Honsberger called its existence "one of the crown jewels of modern geometry". In the Encyclopedia of Triangle Centers the symmedian point appears as the sixth point, X(6).Encyclopedia of Triangle Centers accessed 2014-11-06. For a non-equilateral triangle, it lies in the open punctured at its own center, and could be any point therein. The symmedian point of a triangle with side lengths , and has homogene ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle (180 degrees or π radians). The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the ''base'', in which case the opposite vertex is called the ''apex''; the shortest segment between the base and apex is the ''height''. The area of a triangle equals one-half the product of height and base length. In Euclidean geometry, any two points determine a unique line segment situated within a unique straight line, and any three points that do not all lie on the same straight line determine a unique triangle situated w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Centroid
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the figure. The same definition extends to any object in n-dimensional Euclidean space. In geometry, one often assumes uniform mass density, in which case the '' barycenter'' or ''center of mass'' coincides with the centroid. Informally, it can be understood as the point at which a cutout of the shape (with uniformly distributed mass) could be perfectly balanced on the tip of a pin. In physics, if variations in gravity are considered, then a '' center of gravity'' can be defined as the weighted mean of all points weighted by their specific weight. In geography, the centroid of a radial projection of a region of the Earth's surface to sea level is the region's geographical center. History The term "centroid" was coined in 1814. It is used as a substitute for the older terms "center of grav ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle Center
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions. Each of these classical centers has the property that it is invariant (more precisely equivariant) under similarity transformations. In other words, for any triangle and any similarity transformation (such as a rotation, reflection, dilation, or translation), the center of the transformed triangle is the same point as the transformed center of the original triangle. This invariance is the defining property of a triangle center. It rules out other well-known points such as the Brocard points which are not invariant under reflection and so fail to qualify as triangle centers. For an equilateral triangle, all triangle centers coincide at its centroid. However the triangle centers generally ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lemoine Punkt
Lemoine or Le Moine is a French surname meaning "Monk". Notable people with the surname include: * Adolphe Lemoine, known as Lemoine-Montigny (1812–1880), French comic-actor * Anna Le Moine (born 1973), Swedish curler * Antoine Marcel Lemoine (1763–1817) musician, music publisher, father to Henry * Benjamin-Henri Le Moine (1811–1875), Canadian politician and banker * C.W. Lemoine, US author * Claude Lemoine (born 1932), French chess master and journalist * Cyril Lemoine (born 1983), French cyclist * Émile Lemoine (1840–1912), French geometrician * Fabien Lemoine (born 1987), French footballer * Felipe Ribero y Lemoine (1797–1873), Spanish politician, governor, minister and military leader * Gabriel Lemoine (born 2001), Belgian footballer * Henri Lemoine (cyclist) (1909–1981), French cyclist * Henri Lemoine (fraudster) (fl. 1902–1908), French fraudster * Henry Lemoine (1786–1854), piano teacher, music publisher, composer * Jacques-Antoine-Marie Lemoine ( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Conjugate
__NOTOC__ In geometry, the isogonal conjugate of a point with respect to a triangle is constructed by reflecting the lines about the angle bisectors of respectively. These three reflected lines concur at the isogonal conjugate of . (This definition applies only to points not on a sideline of triangle .) This is a direct result of the trigonometric form of Ceva's theorem. The isogonal conjugate of a point is sometimes denoted by . The isogonal conjugate of is . The isogonal conjugate of the incentre is itself. The isogonal conjugate of the orthocentre is the circumcentre . The isogonal conjugate of the centroid is (by definition) the symmedian point . The isogonal conjugates of the Fermat points are the isodynamic points and vice versa. The Brocard points are isogonal conjugates of each other. In trilinear coordinates, if X=x:y:z is a point not on a sideline of triangle , then its isogonal conjugate is \tfrac : \tfrac : \tfrac. For this reason, the isogonal co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Focus (geometry)
In geometry, focuses or foci (; : focus) are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse, ''n''-ellipse. Conic sections Defining conics in terms of two foci An ellipse can be defined as the locus (mathematics), locus of points for which the sum of the distances to two given foci is constant. A circle is the special case of an ellipse in which the two foci coincide with each other. Thus, a circle can be more simply defined as the locus of points each of which is a fixed distance from a single given focus. A circle can also be defined as the Circles of Apollonius, circle of Apollonius, in terms of two different foci, as the locus of points having a fixed ratio of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Apollonian Circles
In geometry, Apollonian circles are two families (pencils) of circles such that every circle in the first family intersects every circle in the second family orthogonally, and vice versa. These circles form the basis for bipolar coordinates. They were discovered by Apollonius of Perga, a renowned ancient Greek geometer. Definition The Apollonian circles are defined in two different ways by a line segment denoted . Each circle in the first family (the blue circles in the figure) is associated with a positive real number , and is defined as the locus of points such that the ratio of distances from to and to equals , \left\. For values of close to zero, the corresponding circle is close to , while for values of close to , the corresponding circle is close to ; for the intermediate value , the circle degenerates to a line, the perpendicular bisector of . The equation defining these circles as a locus can be generalized to define the Fermat–Apollonius circles of larger s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inversive Geometry
In geometry, inversive geometry is the study of ''inversion'', a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied. Inversion seems to have been discovered by a number of people contemporaneously, including Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs and Ingram (1842–3) and Kelvin (1845). The concept of inversion can be generalized to higher-dimensional spaces. Inversion in a circle Inverse of a point To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point ''P'' with respect to a ''reference circle (Ø)'' with center ''O'' and radius ''r'' is a point ''P'', lying on the ray from ''O'' through ''P'' such that :OP \cdot OP^ = r^2. This is calle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circumcenter
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an -sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case , a cyclic quadrilateral. All rectangles, isosceles trapezoids, right kites, and regular polygons are cyclic, but not every polygon is. Straightedge and compass construction The circumcenter of a triangle can be constructed by drawing any two of the three perpendicular bisectors. For three non-collinear points, these two lines cannot be parallel, and the circumcenter is the point where they cross. Any point on the bisector is equidistant from th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circumcircle
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertex (geometry), vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection (geometry), intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an -sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case , a cyclic quadrilateral. All rectangles, isosceles trapezoids, right kites, and regular polygons are cyclic, but not every polygon is. Straightedge and compass construction The circumcenter of a triangle can be Compass-and-straightedge construction, constructed by drawing any two of the three Bisection#Perpendicular bisectors, perpendicular bisectors. For three non-collinear points, these two lines cannot be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |