Rule 110
   HOME



picture info

Rule 110
The Rule 110 cellular automaton (often called simply Rule 110) is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life. Like Life, Rule 110 with a particular repeating background pattern is known to be Turing complete. This implies that, in principle, any calculation or computer program can be simulated using this automaton. Definition In an elementary cellular automaton, a one-dimensional pattern of 0s and 1s evolves according to a simple set of rules. Whether a point in the pattern will be 0 or 1 in the new generation depends on its current value, as well as on those of its two neighbors. The Rule 110 automaton has the following set of rules: The name "Rule 110" derives from the fact that this rule can be summarized in the binary sequence 01101110; interpreted as a binary number, this corresponds to the decimal value 110. This is the Wolfram code naming scheme. Hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Number 110
110 (one hundred [and] ten) is the natural number following 109 (number), 109 and preceding 111 (number), 111. In mathematics 110 is a sphenic number and a pronic number. Following the prime quadruplet (101, 103, 107, 109), at 110, the Mertens function reaches a low of −5. 110 is the sum of three consecutive Square (algebra), squares, 110 = 5^2 + 6^2 + 7^2. RSA-110 is one of the RSA numbers, large semiprimes that are part of the RSA Factoring Challenge. In base 10, the number 110 is a Harshad number and a self number. In other fields 110 is also: * 1-1-0, the emergency telephone number used to reach police, police services in Iran, Germany, Estonia, China, Indonesia, and Japan. Also used to reach the fire and rescue services in Norway and Turkey. * A percentage in the expression "To give 110%", meaning to give a little more effort than one's maximum effort * Lowest number to not be considered a favourite by anyone among 44,000 people surveyed in a 2014 online poll and subsequ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Cellular Automaton
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling. A cellular automaton consists of a regular grid of ''cells'', each in one of a finite number of ''State (computer science), states'', such as ''on'' and ''off'' (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its ''neighborhood'' is defined relative to the specified cell. An initial state (time ''t'' = 0) is selected by assigning a state for each cell. A new ''generation'' is created (advancing ''t'' by 1), according to some fixed ''rule'' (generally, a mathematical function) that dete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Rule 184
Rule 184 is a one-dimensional binary cellular automaton rule, notable for solving the majority problem as well as for its ability to simultaneously describe several, seemingly quite different, particle systems: * Rule 184 can be used as a simple model for traffic flow in a single lane of a highway, and forms the basis for many cellular automaton models of traffic flow with greater sophistication. In this model, particles (representing vehicles) move in a single direction, stopping and starting depending on the cars in front of them. The number of particles remains unchanged throughout the simulation. Because of this application, Rule 184 is sometimes called the "traffic rule". * Rule 184 also models a form of deposition of particles onto an irregular surface, in which each local minimum of the surface is filled with a particle in each step. At each step of the simulation, the number of particles increases. Once placed, a particle never moves. * Rule 184 can be understood in ter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Rule 90
In the mathematics, mathematical study of cellular automaton, cellular automata, Rule 90 is an elementary cellular automaton based on the exclusive or function. It consists of a one-dimensional array of cells, each of which can hold either a 0 or a 1 value. In each time step all values are simultaneously replaced by the Exclusive or, XOR of their two neighboring values.. call it "the simplest non-trivial cellular automaton",. and it is described extensively in Stephen Wolfram's 2002 book ''A New Kind of Science''. When started from a single live cell, Rule 90 has a time-space diagram in the form of a Sierpiński triangle. The behavior of any other configuration can be explained as a superposition of copies of this pattern, combined using the exclusive or function. Any configuration with only finitely many nonzero cells becomes a replicator (cellular automaton), replicator that eventually fills the array with copies of itself. When Rule 90 is started from a random initial configu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Rule 30
Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in 1983. Using Wolfram's classification scheme, Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour. This rule is of particular interest because it produces complex, seemingly random patterns from simple, well-defined rules. Because of this, Wolfram believes that Rule 30, and cellular automata in general, are the key to understanding how simple rules produce complex structures and behaviour in nature. For instance, a pattern resembling Rule 30 appears on the shell of the widespread cone snail species '' Conus textile''. Rule 30 has also been used as a random number generator in Mathematica, and has also been proposed as a possible stream cipher for use in cryptography. Rule 30 is so named because 30 is the smallest Wolfram code which describes its rule set (as described below). The mirror image, complement, and mirror complement of Rule 30 have Wolfram codes 86, 135, and 149, respecti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Spaceship (CA)
In a cellular automaton, a finite pattern is called a spaceship if it reappears after a certain number of generations in the same orientation but in a different position. The smallest such number of generations is called the period of the spaceship. Description The speed of a spaceship is often expressed in terms of ''c'', the metaphorical speed of light (one cell per generation) which in many cellular automata is the fastest that an effect can spread. For example, a glider in Conway's Game of Life is said to have a speed of c/4, as it takes four generations for a given state to be translated by one cell. Similarly, the ''lightweight spaceship'' is said to have a speed of c/2, as it takes four generations for a given state to be translated by two cells. More generally, if a spaceship in a 2D automaton with the Moore neighborhood is translated by (x, y) after n generations, then the speed v is defined as: This notation can be readily generalised to cellular automata with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Cyclic Tag System
In the theory of computation, a tag system is a deterministic model of computation published by Emil Leon Post in 1943 as a simple form of a Post canonical system. A tag system may also be viewed as an abstract machine, called a Post tag machine (not to be confused with Post–Turing machines)—briefly, a finite-state machine whose only tape is a FIFO queue of unbounded length, such that in each transition the machine reads the symbol at the head of the queue, deletes a constant number of symbols from the head, and appends to the tail a symbol-string that depends solely on the first symbol read in this transition. Because all of the indicated operations are performed in a single transition, a tag machine strictly has only one state. Definitions A ''tag system'' is a triplet (''m'', ''A'', ''P''), where * ''m'' is a positive integer, called the ''deletion number''. * ''A'' is a finite alphabet of symbols, one of which can be a special ''halting symbol''. All finite (possibly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Polynomial Complexity
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is genera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE