Refinement Graph
   HOME





Refinement Graph
Theta-subsumption (θ-subsumption, or just subsumption) is a decidable relation between two first-order clauses that guarantees that one clause logically entails the other. It was first introduced by John Alan Robinson in 1965 and has become a fundamental notion in inductive logic programming. Deciding whether a given clause θ-subsumes another is an NP-complete problem. Definition A clause, that is, a disjunction of first-order literals, can be considered as a set containing all its disjuncts. With this convention, a clause c_1 θ-subsumes a clause c_2 if there is a substitution \theta such that the clause obtained by applying \theta to c_1 is a subset of c_2. Properties θ-subsumption is a weaker relation than logical entailment, that is, whenever a clause c_1 θ-subsumes a clause c_2, then c_1 logically entails c_2 . However, the converse is not true: A clause can logically entail another clause, but not θ-subsume it. θ-subsumption is decidable; more precisely, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decidability (logic)
In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not. Logical systems are decidable if membership in their set of logically valid formulas (or theorems) can be effectively determined. A theory (set of sentences closed under logical consequence) in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory. Many important problems are undecidable, that is, it has been proven that no effective method for determining membership (returning a correct answer after finite, though possibly very long, time in all cases) can exist for them. Decidability of a logical system Each logical system comes with both a syntactic component, which among other things determines the notion of provability, and a semantic component, which determine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Relation
In mathematics, a binary relation on a set (mathematics), set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Every partial order and every equivalence relation is transitive. For example, less than and equality (mathematics), equality among real numbers are both transitive: If and then ; and if and then . Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy is also an ancestor of Carrie. On the other hand, "is the birth mother of" is not a transitive relation, because if Alice is the birth mother of Brenda, and Brenda is the birth mother of Claire, then it does ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inductive Logic Programming
Inductive logic programming (ILP) is a subfield of symbolic artificial intelligence which uses logic programming as a uniform representation for examples, background knowledge and hypotheses. The term "''inductive''" here refers to philosophical (i.e. suggesting a theory to explain observed facts) rather than mathematical (i.e. proving a property for all members of a well-ordered set) induction. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesised logic program which entails all the positive and none of the negative examples. * Schema: ''positive examples'' + ''negative examples'' + ''background knowledge'' ⇒ ''hypothesis''. Inductive logic programming is particularly useful in bioinformatics and natural language processing. History Building on earlier work on Inductive inference, Gordon Plotkin was the first to formalise induction in a clausal setting around 1970, ad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superposition Calculus
The superposition calculus is a calculus for reasoning in equational logic. It was developed in the early 1990s and combines concepts from first-order resolution with ordering-based equality handling as developed in the context of (unfailing) Knuth–Bendix completion. It can be seen as a generalization of either resolution (to equational logic) or unfailing completion (to full clausal logic). Like most first-order calculi, superposition tries to show the ''unsatisfiability'' of a set of first-order clauses, i.e. it performs proofs by refutation. Superposition is refutation complete—given unlimited resources and a ''fair'' derivation strategy, from any unsatisfiable clause set a contradiction will eventually be derived. Many (state-of-the-art) theorem provers for first-order logic are based on superposition (e.g. the E equational theorem prover), although only a few implement the pure calculus. Implementations * E * SPASS * Vampire * Waldmeisterbr>(official web page ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Theorem-prover
Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major motivating factor for the development of computer science. Logical foundations While the roots of formalized logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalized mathematics. Frege's ''Begriffsschrift'' (1879) introduced both a complete propositional calculus and what is essentially modern predicate logic. His '' Foundations of Arithmetic'', published in 1884, expressed (parts of) mathematics in formal logic. This approach was continued by Russell and Whitehead in their influential ''Principia Mathematica'', first published 1910–1913, and with a revised second edition in 1927. Russell and Whitehead thought they could derive all mathematical truth using axioms an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Computers And Intractability
''Computers and Intractability: A Guide to the Theory of NP-Completeness'' is a textbook by Michael Garey and David S. Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature. Open problems Another appendix of the book featured problems for which it was not known whether they were NP-complete or in P (or neither). The problems (with their original names) are: # Graph isomorphism #:This problem is known to be in NP, but it is unknown if it is NP-complete. # Subgraph homeomorphism (for a fixed graph ''H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gordon Plotkin
Gordon David Plotkin (born 9 September 1946) is a theoretical computer scientist in the School of Informatics at the University of Edinburgh. Plotkin is probably best known for his introduction of structural operational semantics (SOS) and his work on denotational semantics. In particular, his notes on ''A Structural Approach to Operational Semantics'' were very influential. He has contributed to many other areas of computer science. Education Plotkin was educated at the University of Glasgow and the University of Edinburgh, gaining his Bachelor of Science degree in 1967 and PhD in 1972 supervised by Rod Burstall. Career and research Plotkin has remained at Edinburgh, and was, with Burstall and Robin Milner, a co-founder of the Laboratory for Foundations of Computer Science (LFCS). His former doctoral students include Luca Cardelli, Philippa Gardner, Doug Gurr, Eugenio Moggi, and Lǐ Wèi. Awards and honours Plotkin was elected a Fellow of the Royal Society (FRS) in 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Resolution (logic)
In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the (complement of the) Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more practical method than one following from Gödel's completeness theorem. The resolution rule can be traced back to Davis and Putnam (1960); however, their algorithm required trying all ground instances of the given formula. This source of combinatorial explosion was eliminated in 1965 by John Alan Robinson's syntactical unification algorithm, which allowed one to instantiate the formula during the proof "on demand" just as far as needed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Lattice
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum ( join) and an infimum ( meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For comparison, in a general lattice, only ''pairs'' of elements need to have a supremum and an infimum. Every non-empty finite lattice is complete, but infinite lattices may be incomplete. Complete lattices appear in many applications in mathematics and computer science. Both order theory and universal algebra study them as a special class of lattices. Complete lattices must not be confused with complete partial orders (CPOs), a more general class of partially ordered sets. More specific complete lattices are complete Boolean algebras and complete Heyting algebras (locales). Formal definition A ''complete lattice'' is a partially ordered set (''L'', ≤) such that every subset ''A'' of ''L'' has both a greatest lower bound (the infimum, or '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \sim on S, the of an element a in S is denoted /math> or, equivalently, to emphasize its equivalence relation \sim, and is defined as the set of all elements in S with which a is \sim-related. The definition of equivalence relations implies that the equivalence classes form a partition of S, meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S by \sim, and is denoted by S /. When the set S has some structure (such as a group operation or a topology) and the equivalence re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antisymmetric Relation
In mathematics, a binary relation R on a set X is antisymmetric if there is no pair of ''distinct'' elements of X each of which is related by R to the other. More formally, R is antisymmetric precisely if for all a, b \in X, \text \,aRb\, \text \,a \neq b\, \text \,bRa\, \text, or equivalently, \text \,aRb\, \text \,bRa\, \text \,a = b. The definition of antisymmetry says nothing about whether aRa actually holds or not for any a. An antisymmetric relation R on a set X may be reflexive (that is, aRa for all a \in X), irreflexive (that is, aRa for no a \in X), or neither reflexive nor irreflexive. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. Examples The divisibility relation on the natural numbers is an important example of an antisymmetric relation. In this context, antisymmetry means that the only way each of two numbers can be divisible by the other is if the two are, in fact, the same number; equivalently, if n and m are distinct and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]