Presentation Of A Group
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of relations among those generators. We then say ''G'' has presentation :\langle S \mid R\rangle. Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is isomorphic to the quotient of a free group on ''S'' by the normal subgroup generated by the relations ''R''. As a simple example, the cyclic group of order ''n'' has the presentation :\langle a \mid a^n = 1\rangle, where 1 is the group identity. This may be written equivalently as :\langle a \mid a^n\rangle, thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recursively Enumerable
In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the set of input numbers for which the algorithm halts is exactly ''S''. Or, equivalently, *There is an algorithm that enumerates the members of ''S''. That means that its output is a list of all the members of ''S'': ''s''1, ''s''2, ''s''3, ... . If ''S'' is infinite, this algorithm will run forever, but each element of S will be returned after a finite amount of time. Note that these elements do not have to be listed in a particular way, say from smallest to largest. The first condition suggests why the term ''semidecidable'' is sometimes used. More precisely, if a number is in the set, one can ''decide'' this by running the algorithm, but if the number is not in the set, the algorithm can run forever, and no information is returned. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dicyclic Group
In group theory, a dicyclic group (notation Dic''n'' or Q4''n'', Coxeter&Moser: Generators and Relations for discrete groups: : Rl = Sm = Tn = RST) is a particular kind of non-abelian group of order 4''n'' (''n'' > 1). It is an extension of the cyclic group of order 2 by a cyclic group of order 2''n'', giving the name ''di-cyclic''. In the notation of exact sequences of groups, this extension can be expressed as: :1 \to C_ \to \mbox_n \to C_2 \to 1. \, More generally, given any finite abelian group with an order-2 element, one can define a dicyclic group. Definition For each integer ''n'' > 1, the dicyclic group Dic''n'' can be defined as the subgroup of the unit quaternions generated by :\begin a & = e^\frac = \cos\frac + i\sin\frac \\ x & = j \end More abstractly, one can define the dicyclic group Dic''n'' as the group with the following presentation :\operatorname_n = \left\langle a, x \mid a^ = 1,\ x^2 = a^n,\ x^ax = a^\right\rangle.\,\! Some things to note w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinite Dihedral Group
In mathematics, the infinite dihedral group Dih∞ is an infinite group with properties analogous to those of the finite dihedral groups. In two-dimensional geometry, the infinite dihedral group represents the frieze group symmetry, ''p''1''m''1, seen as an infinite set of parallel reflections along an axis. Definition Every dihedral group is generated by a rotation ''r'' and a reflection s; if the rotation is a rational multiple of a full rotation, then there is some integer ''n'' such that ''rn'' is the identity, and we have a finite dihedral group of order 2''n''. If the rotation is ''not'' a rational multiple of a full rotation, then there is no such ''n'' and the resulting group has Infinity, infinitely many elements and is called Dih∞. It has Presentation of a group, presentations :\langle r, s \mid s^2 = 1, srs = r^ \rangle \,\! :\langle x, y \mid x^2 = y^2 = 1 \rangle \,\! and is isomorphic to a semidirect product of Z and Z/2, and to the free product Z/2 *  ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surface Group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface), and some point in it, and all the loops both starting and ending at this point— paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then along the second. Two loops are considered equivalent if one can be deformed into the other without breaking. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Felix Klein
Felix Christian Klein (; ; 25 April 1849 – 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations between geometry and group theory. His 1872 Erlangen program classified geometries by their basic symmetry groups and was an influential synthesis of much of the mathematics of the time. During his tenure at the University of Göttingen, Klein was able to turn it into a center for mathematical and scientific research through the establishment of new lectures, professorships, and institutes. His Felix Klein Protocols, seminars covered most areas of mathematics then known as well as their applications. Klein also devoted considerable time to mathematical instruction and promoted mathematics education reform at all grade levels in Germany and abroad. He became the first president of the International Commission on Mathematical Instruction in 1908 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Walther Von Dyck
Walther Franz Anton von Dyck (6 December 1856 – 5 November 1934), born Dyck () and later ennobled, was a German mathematician. He is credited with being the first to define a mathematical group, in the modern sense in . He laid the foundations of combinatorial group theory, being the first to systematically study a group by generators and relations. Biography Von Dyck was a student of Felix Klein Felix Christian Klein (; ; 25 April 1849 – 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations betwe ... and served as chairman of the commission publishing Klein's encyclopedia. Von Dyck was also the editor of Kepler's works. He promoted technological education as rector of the Technische Hochschule of Munich. He was a Plenary Speaker of the ICM in 1908 at Rome. Von Dyck is the son of the Bavarian painter Hermann Dyck. Legacy T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Philosophical Magazine
The ''Philosophical Magazine'' is one of the oldest scientific journals published in English. It was established by Alexander Tilloch in 1798;John Burnett"Tilloch, Alexander (1759–1825)" Dictionary of National Biography#Oxford Dictionary of National Biography, Oxford Dictionary of National Biography, Oxford University Press, Sept 2004; online edn, May 2006, accessed 17 Feb 2010 in 1822 Richard Taylor (editor), Richard Taylor became joint editor and it has been published continuously by Taylor & Francis ever since. Early history The name of the journal dates from a period when "natural philosophy" embraced all aspects of science. The very first paper published in the journal carried the title "Account of Mr Cartwright's Patent Steam Engine". Other articles in the first volume include "Methods of discovering whether Wine has been adulterated with any Metals prejudicial to Health" and "Description of the Apparatus used by Lavoisier to produce Water from its component Parts, Oxyg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Icosahedral Group
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120. The full symmetry group is the Coxeter group of type . It may be represented by Coxeter notation and Coxeter diagram . The set of rotational symmetries forms a subgroup that is isomorphic to the alternating group on 5 letters. As point group Apart from the two infinite series of prismatic and antiprismatic symmetry, rotational icosahedral symmetry or chiral icosahedral symmetry of chiral objects and full icosahedral symmetry or achiral icosahedral symmetry are the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Icosian Calculus
The icosian calculus is a non-commutative algebraic structure discovered by the Irish mathematician William Rowan Hamilton in 1856. In modern terms, he gave a group presentation of the icosahedral group, icosahedral rotation group by Generating set of a group, generators and relations. Hamilton's discovery derived from his attempts to find an algebra of tuple, "triplets" or 3-tuples that he believed would reflect the three Cartesian coordinate system#Cartesian coordinates in three dimensions, Cartesian axes. The symbols of the icosian calculus correspond to moves between vertices on a dodecahedron. (Hamilton originally thought in terms of moves between the faces of an icosahedron, which is equivalent by Platonic solid#Dual polyhedra, duality. This is the origin of the name "icosian".) Hamilton's work in this area resulted indirectly in the terms Hamiltonian circuit and Hamiltonian path in graph theory. He also invented the icosian game as a means of illustrating and popularising hi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
William Rowan Hamilton
Sir William Rowan Hamilton (4 August 1805 – 2 September 1865) was an Irish astronomer, mathematician, and physicist who made numerous major contributions to abstract algebra, classical mechanics, and optics. His theoretical works and mathematical equations are considered fundamental to modern theoretical physics, particularly Hamiltonian mechanics, his reformulation of Lagrangian mechanics. His career included the analysis of geometrical optics, Fourier analysis, and quaternions, the last of which made him one of the founders of modern linear algebra. Hamilton was Andrews Professor of Astronomy at Trinity College Dublin. He was also the third director of Dunsink Observatory from 1827 to 1865. The Hamilton Institute at Maynooth University is named after him. Early life Hamilton was the fourth of nine children born to Sarah Hutton (1780–1817) and Archibald Hamilton (1778–1819), who lived in Dublin at 29 Dominick Street, Dublin, Dominick Street, later renumbered to 36. Ham ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uncountably
In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than aleph-null, the cardinality of the natural numbers. Examples of uncountable sets include the set of all real numbers and set of all subsets of the natural numbers. Characterizations There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold: * There is no injective function (hence no bijection) from ''X'' to the set of natural numbers. * ''X'' is nonempty and for every ω-sequence of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no surjective function from the natural numbers to ''X''. * The cardinality of ''X'' is neither finite nor equal to \aleph_0 (aleph-null). * The set ''X'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |