HOME

TheInfoList



OR:

The icosian calculus is a non-commutative
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set ...
discovered by the Irish mathematician
William Rowan Hamilton Sir William Rowan Hamilton LL.D, DCL, MRIA, FRAS (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist. He was the Andrews Professor of Astronomy at Trinity College Dublin, and Royal Astronomer of Ire ...
in 1856. In modern terms, he gave a
group presentation In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—an ...
of the icosahedral rotation group by generators and relations. Hamilton's discovery derived from his attempts to find an algebra of "triplets" or 3-tuples that he believed would reflect the three Cartesian axes. The symbols of the icosian calculus can be equated to moves between vertices on a
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentag ...
. Hamilton's work in this area resulted indirectly in the terms Hamiltonian circuit and
Hamiltonian path In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex ...
in graph theory. He also invented the icosian game as a means of illustrating and popularising his discovery.


Informal definition

The algebra is based on three symbols that are each
roots of unity In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important i ...
, in that repeated application of any of them yields the value 1 after a particular number of steps. They are: : \begin \iota^2 & = 1, \\ \kappa^3 & = 1, \\ \lambda^5 & = 1. \end Hamilton also gives one other relation between the symbols: :\lambda = \iota\kappa. (In modern terms this is the (2,3,5)
triangle group In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic trian ...
.) The operation is
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
but not
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
. They generate a group of order 60, isomorphic to the group of rotations of a regular
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetric ...
or
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentag ...
, and therefore to the
alternating group In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or Basic pr ...
of degree five. Although the algebra exists as a purely abstract construction, it can be most easily visualised in terms of operations on the edges and vertices of a dodecahedron. Hamilton himself used a flattened dodecahedron as the basis for his instructional game. Imagine an insect crawling along a particular edge of Hamilton's labelled dodecahedron in a certain direction, say from B to C. We can represent this
directed edge In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pai ...
by BC. *The icosian symbol \iota equates to changing direction on any edge, so the insect crawls from C to B (following the directed edge CB). *The icosian symbol \kappa equates to rotating the insect's current travel anti-clockwise around the end point. In our example this would mean changing the initial direction BC to become DC. *The icosian symbol \lambda equates to making a right-turn at the end point, moving from BC to CD.


Legacy

The icosian calculus is one of the earliest examples of many mathematical ideas, including: * presenting and studying a group by generators and relations; * a
triangle group In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic trian ...
, later generalized to
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
s; * visualization of a group by a graph, which led to
combinatorial group theory In mathematics, combinatorial group theory is the theory of free groups, and the concept of a presentation of a group by generators and relations. It is much used in geometric topology, the fundamental group of a simplicial complex having in a nat ...
and later
geometric group theory Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these group ...
; * Hamiltonian circuits and
Hamiltonian path In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex ...
s in graph theory; * dessin d'enfantW. R. Hamilton, Letter to John T. Graves "On the Icosian" (17 October 1856), ''Mathematical papers, Vol. III, Algebra,'' eds. H. Halberstam and R. E. Ingram, Cambridge University Press, Cambridge, 1967, pp. 612–625. – see dessin d'enfant: history for details.


See also

* Icosian


References

{{reflist Graph theory Abstract algebra Binary operations Rotational symmetry William Rowan Hamilton