The icosian calculus is a non-commutative
algebraic structure
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set ...
discovered by the Irish mathematician
William Rowan Hamilton
Sir William Rowan Hamilton LL.D, DCL, MRIA, FRAS (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist. He was the Andrews Professor of Astronomy at Trinity College Dublin, and Royal Astronomer of Ire ...
in 1856.
In modern terms, he gave a
group presentation
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—an ...
of the
icosahedral rotation group by
generators and relations.
Hamilton's discovery derived from his attempts to find an algebra of
"triplets" or 3-tuples that he believed would reflect the three
Cartesian axes. The symbols of the icosian calculus can be equated to moves between vertices on a
dodecahedron
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentag ...
. Hamilton's work in this area resulted indirectly in the terms
Hamiltonian circuit and
Hamiltonian path
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex ...
in graph theory.
He also invented the
icosian game as a means of illustrating and popularising his discovery.
Informal definition

The algebra is based on three symbols that are each
roots of unity
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important i ...
, in that repeated application of any of them yields the value 1 after a particular number of steps. They are:
:
Hamilton also gives one other relation between the symbols:
:
(In modern terms this is the (2,3,5)
triangle group
In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic trian ...
.)
The operation is
associative
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
but not
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
. They generate a group of order 60, isomorphic to the
group of rotations of a regular
icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetric ...
or
dodecahedron
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentag ...
, and therefore to the
alternating group
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or
Basic pr ...
of degree five.
Although the algebra exists as a purely abstract construction, it can be most easily visualised in terms of operations on the edges and vertices of a dodecahedron. Hamilton himself used a flattened dodecahedron as the basis for his instructional game.
Imagine an insect crawling along a particular edge of Hamilton's labelled dodecahedron in a certain direction, say from
to
. We can represent this
directed edge
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs.
Definition
In formal terms, a directed graph is an ordered pai ...
by
.

*The icosian symbol
equates to changing direction on any edge, so the insect crawls from
to
(following the directed edge
).
*The icosian symbol
equates to rotating the insect's current travel anti-clockwise around the end point. In our example this would mean changing the initial direction
to become
.
*The icosian symbol
equates to making a right-turn at the end point, moving from
to
.
Legacy
The icosian calculus is one of the earliest examples of many mathematical ideas, including:
* presenting and studying a group by
generators and relations;
* a
triangle group
In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic trian ...
, later generalized to
Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
s;
* visualization of a group by a graph, which led to
combinatorial group theory In mathematics, combinatorial group theory is the theory of free groups, and the concept of a presentation of a group by generators and relations. It is much used in geometric topology, the fundamental group of a simplicial complex having in a nat ...
and later
geometric group theory
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these group ...
;
*
Hamiltonian circuits and
Hamiltonian path
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex ...
s in graph theory;
*
dessin d'enfant[W. R. Hamilton, Letter to John T. Graves "On the Icosian" (17 October 1856), ''Mathematical papers, Vol. III, Algebra,'' eds. H. Halberstam and R. E. Ingram, Cambridge University Press, Cambridge, 1967, pp. 612–625.] – see
dessin d'enfant: history for details.
See also
*
Icosian
References
{{reflist
Graph theory
Abstract algebra
Binary operations
Rotational symmetry
William Rowan Hamilton