HOME





Parabolic Induction
In mathematics, parabolic induction is a method of constructing representations of a reductive group from representations of its parabolic subgroups. If ''G'' is a reductive algebraic group and P=MAN is the Langlands decomposition of a parabolic subgroup ''P'', then parabolic induction consists of taking a representation of MA, extending it to ''P'' by letting ''N'' act trivially, and inducing the result from ''P'' to ''G''. There are some generalizations of parabolic induction using cohomology, such as cohomological parabolic induction and Deligne–Lusztig theory. Philosophy of cusp forms The ''philosophy of cusp forms'' was a slogan of Harish-Chandra, expressing his idea of a kind of reverse engineering of automorphic form theory, from the point of view of representation theory. The discrete group Γ fundamental to the classical theory disappears, superficially. What remains is the basic idea that representations in general are to be constructed by parabolic induction of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Form
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group ''G''(A''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a complex-valued function on ''G''(A''F'') that is l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nolan Wallach
Nolan Russell Wallach (born August 3, 1940) is a mathematician known for work in the representation theory of reductive algebraic groups. He is the author of the two-volume treatise ''Real Reductive Groups''. Education and career Wallach did his undergraduate studies at the University of Maryland, graduating in 1962.UCSD Mathematics Profile: Nolan Wallach
, retrieved 2013-09-01.
He earned his Ph.D. from in 1966, under the supervision of Jun-Ichi Hano. He became an instructor and then lecturer at the

Langlands Program
In mathematics, the Langlands program is a set of conjectures about connections between number theory, the theory of automorphic forms, and geometry. It was proposed by . It seeks to relate the structure of Galois groups in algebraic number theory to automorphic forms and, more generally, the representation theory of algebraic groups over local fields and adeles. It was described by Edward Frenkel as the " grand unified theory of mathematics." Background The Langlands program is built on existing ideas: the philosophy of cusp forms formulated a few years earlier by Harish-Chandra and , the work and Harish-Chandra's approach on semisimple Lie groups, and in technical terms the trace formula of Selberg and others. What was new in Langlands' work, besides technical depth, was the proposed connection to number theory, together with its rich organisational structure hypothesised (so-called functoriality). Harish-Chandra's work exploited the principle that what can be d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Israel Gelfand
Israel Moiseevich Gelfand, also written Israïl Moyseyovich Gel'fand, or Izrail M. Gelfand (, , ; – 5 October 2009) was a prominent Soviet and American mathematician, one of the greatest mathematicians of the 20th century, biologist, teacher and organizer of mathematical education. He made significant contributions to many branches of mathematics, including group theory, representation theory and functional analysis. The recipient of many awards, including the Order of Lenin and the first Wolf Prize, he was a Foreign Fellow of the Royal Society and professor at Moscow State University and, after immigrating to the United States shortly before his 76th birthday, at Rutgers University. Gelfand is also a 1994 MacArthur Fellow. His legacy continues through his students, who include Endre Szemerédi, Alexandre Kirillov, Edward Frenkel, Joseph Bernstein, David Kazhdan, as well as his own son, Sergei Gelfand. Early years A native of Kherson Governorate, Russian Empire (now, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cuspidal Representation
In number theory, cuspidal representations are certain representations of algebraic groups that occur discretely in L^2 spaces. The term ''cuspidal'' is derived, at a certain distance, from the cusp forms of classical modular form theory. In the contemporary formulation of automorphic representations, representations take the place of holomorphic functions; these representations may be of adelic algebraic groups. When the group is the general linear group \operatorname_2, the cuspidal representations are directly related to cusp forms and Maass forms. For the case of cusp forms, each Hecke eigenform ( newform) corresponds to a cuspidal representation. Formulation Let ''G'' be a reductive algebraic group over a number field ''K'' and let A denote the adeles of ''K''. The group ''G''(''K'') embeds diagonally in the group ''G''(A) by sending ''g'' in ''G''(''K'') to the tuple (''g''''p'')''p'' in ''G''(A) with ''g'' = ''g''''p'' for all (finite and infinite) primes ''p''. Let ''Z' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Group
In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and only if its identity is isolated. A subgroup ''H'' of a topological group ''G'' is a discrete subgroup if ''H'' is discrete when endowed with the subspace topology from ''G''. In other words there is a neighbourhood of the identity in ''G'' containing no other element of ''H''. For example, the integers, Z, form a discrete subgroup of the reals, R (with the standard metric topology), but the rational numbers, Q, do not. Any group can be endowed with the discrete topology, making it a discrete topological group. Since every map from a discrete space is continuous, the topological homomorphisms between discrete groups are exactly the group homomorphisms between the underlying groups. Hence, there is an isomorphism between the catego ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daniel Bump
Daniel Willis Bump (born 13 May 1952) is a mathematician who is a professor at Stanford University working in representation theory. He is a fellow of the American Mathematical Society since 2015, for "contributions to number theory, representation theory, combinatorics, and random matrix theory, as well as mathematical exposition". He has a Bachelor of Arts from Reed College, where he graduated in 1974. He obtained his Ph.D. from the University of Chicago in 1982 under the supervision of Walter Lewis Baily, Jr. Among Bump's doctoral students is president of the National Association of Mathematicians, Edray Goins. Selected publications Articles * Bump, D., Friedberg, S., & Hoffstein, J. (1990)"Nonvanishing theorems for L-functions of modular forms and their derivatives" ''Inventiones Mathematicae'', 102(1), pp. 543–618. * Bump, D., & Ginzburg, D. (1992). "Symmetric square L-functions on GL(''r'')". ''Annals of Mathematics'', 136(1), pp. 137–205. * Bump, D., Fri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrix (mathematics), matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The algebraic objects amenable to such a description include group (mathematics), groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the group representation, representation theory of groups, in which elements of a group are represented by invertible matrices such that the group operation is matrix multiplication. Representation theory is a useful method because it reduces problems in abstract algebra to problems ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harish-Chandra
Harish-Chandra (né Harishchandra) FRS (11 October 1923 – 16 October 1983) was an Indian-American mathematician and physicist who did fundamental work in representation theory, especially harmonic analysis on semisimple Lie groups. Early life Harish-Chandra was born in Kanpur. He was educated at B.N.S.D. College, Kanpur and at the University of Allahabad. After receiving his master's degree in physics in 1940, he moved to the Indian Institute of Science, Bangalore for further studies under Homi J. Bhabha. In 1945, he moved to University of Cambridge, and worked as a research student under Paul Dirac. While at Cambridge, he attended lectures by Wolfgang Pauli, and during one of them, Harish-Chandra pointed out a mistake in Pauli's work. The two became lifelong friends. During this time he became increasingly interested in mathematics. He obtained his PhD, ''Infinite Irreducible Representations of the Lorentz'' ''Group'', at Cambridge in 1947 under Dirac. Honors and awar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups allow many group-theoretic problems to be reduced to problems in linear algebra. In physics, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical object. More formally, a "representation" means a homomorphism from the group to the autom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cusp Form
In number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion. Introduction A cusp form is distinguished in the case of modular forms for the modular group by the vanishing of the constant coefficient ''a''0 in the Fourier series expansion (see ''q''-expansion) :\sum a_n q^n. This Fourier expansion exists as a consequence of the presence in the modular group's action on the upper half-plane via the transformation :z\mapsto z+1. For other groups, there may be some translation through several units, in which case the Fourier expansion is in terms of a different parameter. In all cases, though, the limit as ''q'' → 0 is the limit in the upper half-plane as the imaginary part of ''z'' → ∞. Taking the quotient by the modular group, this limit corresponds to a cusp of a modular curve (in the sense of a point added for compactification). So, the definition amounts to saying that a cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]