Optical Circulators
An optical circulator is a three- or four-port optical device designed such that light entering any port exits from the next. This means that if light enters port 1 it is emitted from port 2, but if some of the emitted light is reflected back to the circulator, it does not come out of port 1 but instead exits from port 3. This is analogous to the operation of an electronic circulator. Fiber-optic circulators are used to separate optical signals that travel in opposite directions in an optical fiber, for example to achieve bi-directional transmission over a single fiber. Because of their high isolation of the input and reflected optical powers and their low insertion loss, optical circulators are widely used in advanced fiber-optic communications and fiber-optic sensor applications. Optical circulators are ''non-reciprocal'' optics, which means that changes in the properties of light passing through the device are not reversed when the light passes through in the opposite direc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Lightwave Technology
The ''Journal of Lightwave Technology'' is a biweekly peer-reviewed scientific journal covering optical guided-wave science, technology, and engineering. It is published jointly by the Optical Society and the IEEE Photonics Society. It was established in 1983 and the editor-in-chief is Magnus Karlsson (Chalmers University of Technology). According to the ''Journal Citation Reports'', the journal has a 2023 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 4.1. References External links * {{DEFAULTSORT:Journal of Lightwave Technology English-language journals IEEE academic journals Biweekly journals Academic journals established in 1983 Optics journals Optica (society) academic journals ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plasmonics
Plasmonics or nanoplasmonics refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by photonics, plasmonics follows the trend of miniaturizing optical devices (see also nanophotonics), and finds applications in sensing, microscopy, optical communications, and bio-photonics. Principles Plasmonics typically utilizes Surface plasmon polariton, surface plasmon polaritons (SPPs), that are coherent electron oscillations travelling together with an Electromagnetic radiation, electromagnetic wave along the interface between a dielectric (e.g. glass, air) and a metal (e.g. silver, gold). The SPP modes are strongly confined to their supporting interface, giving rise to strong light-matter interactions. In particular, the electron gas in the metal oscillates with the electro-magnetic wave. Because the moving electrons are scattered, ohmic losses in plasmonic signals are generally large, wh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nader Engheta
Nader Engheta (; born October 8, 1955) is an Iranian- American scientist. He has made pioneering contributions to the fields of metamaterials, transformation optics, plasmonic optics, nanophotonics, graphene photonics, nano-materials, nanoscale optics, nano-antennas and miniaturized antennas, physics and reverse-engineering of polarization vision in nature, bio-inspired optical imaging, fractional paradigm in electrodynamics, and electromagnetics and microwaves.Research Interests . University of Pennsylvania. February 2011. Background Engheta was born on October 8, 1955 in . After earning a B.S. degree from the school of engineering (Daneshkadeh-e-Fanni) of the[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Science (journal)
''Science'' is the peer review, peer-reviewed academic journal of the American Association for the Advancement of Science (AAAS) and one of the world's top academic journals. It was first published in 1880, is currently circulated weekly and has a subscriber base of around 130,000. Because institutional subscriptions and online access serve a larger audience, its estimated readership is over 400,000 people. ''Science'' is based in Washington, D.C., United States, with a second office in Cambridge, UK. Contents The major focus of the journal is publishing important original scientific research and research reviews, but ''Science'' also publishes science-related news, opinions on science policy and other matters of interest to scientists and others who are concerned with the wide implications of science and technology. Unlike most scientific journals, which focus on a specific field, ''Science'' and its rival ''Nature (journal), Nature'' cover the full range of List of academ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can move no faster than the speed of light measured in vacuum. The photon belongs to the class of boson particles. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While Planck was trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, he proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain the pho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Photon Counting
Photon counting is a technique in which individual photons are counted using a single-photon detector (SPD). A single-photon detector emits a pulse of signal for each detected photon. The counting efficiency is determined by the quantum efficiency and the system's electronic losses. Many photodetectors can be configured to detect individual photons, each with relative advantages and disadvantages. Common types include photomultipliers, geiger counters, single-photon avalanche diodes, superconducting nanowire single-photon detectors, transition edge sensors, and scintillation counters. Charge-coupled devices can be used. Advantages Photon counting eliminates gain noise, where the proportionality constant between analog signal out and number of photons varies randomly. Thus, the excess noise factor of a photon-counting detector is unity, and the achievable signal-to-noise ratio for a fixed number of photons is generally higher than the same detector without photon counting. Pho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum State
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system represented by the state. Knowledge of the quantum state, and the rules for the system's evolution in time, exhausts all that can be known about a quantum system. Quantum states may be defined differently for different kinds of systems or problems. Two broad categories are * wave functions describing quantum systems using position or momentum variables and * the more abstract vector quantum states. Historical, educational, and application-focused problems typically feature wave functions; modern professional physics uses the abstract vector states. In both categories, quantum states divide into pure versus mixed states, or into coherent states and incoherent states. Categories with special properties include stationary states for tim ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Whispering-gallery Mode
Whispering-gallery waves, or whispering-gallery modes, are a type of wave that can travel around a concave surface. Originally discovered for sound waves in the whispering gallery of St Paul's Cathedral, they can exist for light and for other waves, with important applications in nondestructive testing, lasing, cooling and sensing, as well as in astronomy. Introduction Whispering-gallery waves were first explained for the case of St Paul's Cathedral circa 1878 by Lord Rayleigh, who revised a previous misconception that whispers could be heard across the dome but not at any intermediate position. He explained the phenomenon of travelling whispers with a series of specularly reflected sound rays making up chords of the circular gallery. Clinging to the walls the sound should decay in intensity only as the inverse of the distance — rather than the inverse square as in the case of a point source of sound radiating in all directions. This accounts for the whispers being audibl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rubidium
Rubidium is a chemical element; it has Symbol (chemistry), symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher than Properties of water, water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope Rb, and 28% is slightly radioactive Rb, with a half-life of 48.8 billion years – more than three times as long as the estimated age of the universe. German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, Atomic emission spectroscopy#Flame emission spectroscopy, flame spectroscopy. The name comes from the Latin word , meaning deep red, the color of its emission spectrum. Rubidium's compounds have various chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chiral
Chirality () is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek language, Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from its mirror image; that is, it cannot be wikt:superpose, superposed (not to be confused with wikt:superimpose, superimposed) onto it. Conversely, a mirror image of an ''achiral'' object, such as a sphere, cannot be distinguished from the object. A chiral object and its mirror image are called ''enantiomorphs'' (Greek, "opposite forms") or, when referring to molecules, ''enantiomers''. A non-chiral object is called ''achiral'' (sometimes also ''amphichiral'') and can be superposed on its mirror image. The term was first used by Lord Kelvin in 1893 in the second Robert Boyle Lecture at the Oxford University Junior Scientific Club which was published in 1894: Human hands are perhaps the most recognized example of chirality ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Optica (journal)
''Optica'' is a monthly peer-reviewed open access scientific journal published by Optica. It covers the entire spectrum of theoretical and applied optics and photonics. It was established in July 2014. The founding editor-in-chief was Alexander Gaeta (Columbia University). In 2020, the editor-in-chief became Prem Kumar (Northwestern University, USA), assisted by an extended team of Deputy Editors: Thomas Krauss (University of York, England), Curtis Menyuk (University of Maryland, Baltimore County, USA), Irina Novikova (College of William & Mary, USA), Nathalie Picqué ( Max Planck Institute of Quantum Optics, Germany) and Eric Potma (University of California, Irvine, USA). Abstracting and indexing The journal is abstracted and indexed in: * Chemical Abstracts Service * Current Contents/Physical, Chemical & Earth Sciences * Science Citation Index Expanded According to the ''Journal Citation Reports'', the journal has a 2023 impact factor The impact factor (IF) or journa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |