Medial Rhombic Triacontahedron
In geometry, the medial rhombic triacontahedron (or midly rhombic triacontahedron) is a nonconvex isohedral polyhedron. It is a stellation of the rhombic triacontahedron, and can also be called small stellated triacontahedron. Its dual is the dodecadodecahedron. Its 24 vertices are all on the 12 axes with 5-fold symmetry (i.e. each corresponds to one of the 12 vertices of the icosahedron). This means that on each axis there is an inner and an outer vertex. The ratio of outer to inner vertex radius is \varphi \approx 1.618, the golden ratio. It has 30 intersecting rhombic faces, which correspond to the faces of the convex rhombic triacontahedron. The diagonals in the rhombs of the convex solid have a ratio of 1 to \varphi. The medial solid can be generated from the convex one by stretching the shorter diagonal from length 1 to \varphi^3 \approx 4.236. So the ratio of rhomb diagonals in the medial solid is 1 to \varphi^2 \approx 2.618. This solid is to the compound of small st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Great Triambic Icosahedron
In geometry, the great triambic icosahedron and medial triambic icosahedron (or midly triambic icosahedron) are visually identical Dual polyhedron, dual uniform polyhedra. The exterior surface also represents the The Fifty-Nine Icosahedra, De2f2 Great_triambic_icosahedron#As_a_stellation, stellation of the icosahedron. These figures can be differentiated by marking which intersections between edges are true Vertex (geometry), vertices and which are not. In the above images, true vertices are marked by gold spheres, which can be seen in the concave Y-shaped areas. Alternatively, if the faces are filled with the even–odd rule, the internal structure of both shapes will differ. The 12 vertices of the convex hull matches the vertex arrangement of an icosahedron. Great triambic icosahedron The great triambic icosahedron is the dual of the great ditrigonal icosidodecahedron, U47. It has 20 inverted-hexagonal (triambus) faces, shaped like a three-bladed propeller. It has 32 vertices ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Great Rhombic Triacontahedron
In geometry, the great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron. It is the dual of the great icosidodecahedron (U54). Like the convex rhombic triacontahedron it has 30 rhombic faces, 60 edges and 32 vertices (also 20 on 3-fold and 12 on 5-fold axes). It can be constructed from the convex solid by expanding the faces by factor of \varphi^3 \approx 4.236, where \varphi\! is the golden ratio. This solid is to the compound of great icosahedron and great stellated dodecahedron what the convex one is to the compound of dodecahedron and icosahedron: The crossing edges in the dual compound are the diagonals of the rhombs. What resembles an "excavated" rhombic triacontahedron (compare excavated dodecahedron and excavated icosahedron) can be seen within the middle of this compound. The rest of the polyhedron strikingly resembles a rhombic hexecontahedron In geometry, a rhombic hexecontahedron is a stellation of the rhombic triacontahedron. It is noncon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order-4 Pentagonal Tiling
In geometry, the order-4 pentagonal tiling is a List_of_regular_polytopes#Hyperbolic_tilings, regular tiling of the Hyperbolic geometry, hyperbolic plane. It has Schläfli symbol of . It can also be called a pentapentagonal tiling in a bicolored quasiregular form. Symmetry This tiling represents a hyperbolic kaleidoscope of 5 mirrors meeting as edges of a regular pentagon. This symmetry by orbifold notation is called *22222 with 5 order-2 mirror intersections. In Coxeter notation can be represented as [5*,4], removing two of three mirrors (passing through the pentagon center) in the [5,4] symmetry. The kaleidoscopic domains can be seen as bicolored pentagons, representing mirror images of the fundamental domain. This coloring represents the uniform tiling t1 and as a quasiregular tiling is called a ''pentapentagonal tiling''. : Related polyhedra and tiling This tiling is topologically related as a part of sequence of regular polyhedra and tilings with pentagonal faces, st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
H2-5-4-primal
H, or h, is the eighth letter of the Latin alphabet, used in the modern English alphabet, including the alphabets of other western European languages and others worldwide. Its name in English is ''aitch'' (pronounced , plural ''aitches''), or regionally ''haitch'' (pronounced , plural ''haitches'')''.''"H" ''Oxford English Dictionary,'' 2nd edition (1989); ''Merriam-Webster's Third New International Dictionary of the English Language, Unabridged'' (1993); "aitch" or "haitch", op. cit. Name English For most English speakers, the name for the letter is pronounced as and spelled "aitch" or occasionally "eitch". The pronunciation and the associated spelling "haitch" are often considered to be h-adding and are considered non-standard in England. It is, however, a feature of Hiberno-English, and occurs sporadically in various other dialects. The perceived name of the letter affects the choice of indefinite article before initialisms beginning with H: for example "an H-bomb" ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bring Sextic With Squares
{{disambig, surname ...
Bring may refer to: * Erland Samuel Bring (1736–1798), Swedish mathematician * Posten Bring, the Norwegian postal service, or its subsidiary Bring AS See also * * * Brang * Bringer (other) * Carry (other) Carry or carrying may refer to: People *Carry (name) Finance * Carried interest (or carry), the share of profits in an investment fund paid to the fund manager * Carry (investment), a financial term: the carry of an asset is the gain or cost of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Polyhedron
A regular polyhedron is a polyhedron whose symmetry group acts transitive group action, transitively on its Flag (geometry), flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are Congruence (geometry), congruent regular polygons which are assembled in the same way around each vertex (geometry), vertex. A regular polyhedron is identified by its Schläfli symbol of the form , where ''n'' is the number of sides of each face and ''m'' the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In addition, there are five regular compounds of the regular polyhedra. The regular polyhedra There are five Convex polygon, convex regular polyhedra, known as the Platoni ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square (geometry)
In geometry, a square is a regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal sides. As with all rectangles, a square's angles are right angles (90 degrees, or /2 radians), making adjacent sides perpendicular. The area of a square is the side length multiplied by itself, and so in algebra, multiplying a number by itself is called squaring. Equal squares can tile the plane edge-to-edge in the square tiling. Square tilings are ubiquitous in tiled floors and walls, graph paper, image pixels, and game boards. Square shapes are also often seen in building floor plans, origami paper, food servings, in graphic design and heraldry, and in instant photos and fine art. The formula for the area of a square forms the basis of the calculation of area and motivates the search for methods for squaring the circle by compass and straightedge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order-5 Square Tiling
In geometry, the order-5 square tiling is a List_of_regular_polytopes#Hyperbolic_tilings, regular tiling of the Hyperbolic geometry, hyperbolic plane. It has Schläfli symbol of . Related polyhedra and tiling This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4n). This hyperbolic tiling is related to a Infinite_skew_polyhedron#Semiregular_infinite_skew_polyhedra, semiregular infinite skew polyhedron with the same vertex figure in Euclidean 3-space. : References * John Horton Conway, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ''The Symmetries of Things'' 2008, (Chapter 19, The Hyperbolic Archimedean Tessellations) * See also *Square tiling *Uniform tilings in hyperbolic plane *List of regular polytopes *Medial rhombic triacontahedron External links * * Hyperbolic and Spherical Tiling Gallery * [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch] Hyp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) The hyperbolic plane is a plane (mathematics), plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudosphere, pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they local property, locally resemble the hyperbolic plane. The hyperboloid model of hyperbolic geometry provides a representation of event (relativity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kepler–Poinsot Polyhedron
In geometry, a Kepler–Poinsot polyhedron is any of four Regular polyhedron, regular Star polyhedron, star polyhedra. They may be obtained by stellation, stellating the regular Convex polyhedron, convex dodecahedron and icosahedron, and differ from these in having regular pentagrammic face (geometry), faces or vertex figures. They can all be seen as three-dimensional analogues of the pentagram in one way or another. Characteristics Sizes The great icosahedron edge length is \phi^4 = \tfrac12\bigl(7+3\sqrt5\,\bigr) times the original icosahedron edge length. The small stellated dodecahedron, great dodecahedron, and great stellated dodecahedron edge lengths are respectively \phi^3 = 2+\sqrt5, \phi^2 = \tfrac12\bigl(3+\sqrt5\,\bigr), and \phi^5 = \tfrac12\bigl(11+5\sqrt5\,\bigr) times the original dodecahedron edge length. Non-convexity These figures have pentagrams (star pentagons) as faces or vertex figures. The small stellated dodecahedron, small and great stellated dodec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |