HOME





Mean Width
In geometry, the mean width is a measure of the "size" of a body; see Hadwiger's theorem for more about the available measures of bodies. In n dimensions, one has to consider (n-1)-dimensional hyperplanes perpendicular to a given direction \hat in S^, where S^n is the n-sphere (the surface of a (n+1)-dimensional sphere). The "width" of a body in a given direction \hat is the distance between the closest pair of such planes, such that the body is entirely in between the two hyper planes (the planes only intersect with the boundary of the body). The mean width is the average of this "width" over all \hat in S^. More formally, define a compact body B as being equivalent to set of points in its interior plus the points on the boundary (here, points denote elements of \mathbb^n). The support function of body B is defined as : h_B(n)=\max\ where n is a direction and \langle,\rangle denotes the usual inner product on \mathbb^n. The mean width is then : b(B)=\frac \int_ h_B(\hat)+h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Hadwiger's Theorem
In integral geometry (otherwise called geometric probability theory), Hadwiger's theorem characterises the valuations on convex bodies in \R^n. It was proved by Hugo Hadwiger. Introduction Valuations Let \mathbb^n be the collection of all compact convex sets in \R^n. A valuation is a function v : \mathbb^n \to \R such that v(\varnothing) = 0 and for every S, T \in \mathbb^n that satisfy S \cup T \in \mathbb^n, v(S) + v(T) = v(S \cap T) + v(S \cup T)~. A valuation is called continuous if it is continuous with respect to the Hausdorff metric. A valuation is called invariant under rigid motions if v(\varphi(S)) = v(S) whenever S \in \mathbb^n and \varphi is either a translation or a rotation of \R^n. Quermassintegrals The quermassintegrals W_j : \mathbb^n \to \R are defined via Steiner's formula \mathrm_n(K + t B) = \sum_^n \binom W_j(K) t^j~, where B is the Euclidean ball. For example, W_0 is the volume, W_1 is proportional to the surface measure, W_ is proportional t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

N-sphere
In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point within them has one and two degrees of freedom respectively. However, the typical embedding of the 1-dimensional circle is in 2-dimensional space, the 2-dimensional sphere is usually depicted embedded in 3-dimensional space, and a general -sphere is embedded in an -dimensional space. The term ''hyper''sphere is commonly used to distinguish spheres of dimension which are thus embedded in a space of dimension , which means that they cannot be easily visualized. The -sphere is the setting for -dimensional spherical geometry. Considered extrinsically, as a hypersurface embedded in -dimensional Euclidean space, an -sphere is the locus of points at equal distance (the ''radius'') from a given '' center'' point. Its interior, consisting of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Width In Dir N For Mean Width
Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the International System of Units (SI) system, the base unit for length is the metre. Length is commonly understood to mean the most extended dimension of a fixed object. However, this is not always the case and may depend on the position the object is in. Various terms for the length of a fixed object are used, and these include height, which is vertical length or vertical extent, width, breadth, and depth. ''Height'' is used when there is a base from which vertical measurements can be taken. ''Width'' and ''breadth'' usually refer to a shorter dimension than ''length''. ''Depth'' is used for the measure of a third dimension. Length is the measure of one spatial dimension, whereas area is a measure of two dimensions (length squared) and volume is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE