HOME





Mapping Class Group
In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space. Motivation Consider a topological space, that is, a space with some notion of closeness between points in the space. We can consider the set of homeomorphisms from the space into itself, that is, continuous maps with continuous inverses: functions which stretch and deform the space continuously without breaking or gluing the space. This set of homeomorphisms can be thought of as a space itself. It forms a group under functional composition. We can also define a topology on this new space of homeomorphisms. The open sets of this new function space will be made up of sets of functions that map compact subsets ''K'' into open subsets ''U'' as ''K'' and ''U'' range throughout our original topological space, completed with their finite inters ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homeomorphism Group
In mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. They are important to the theory of topological spaces, generally exemplary of automorphism groups and topologically invariant in the group isomorphism sense. Properties and examples There is a natural group action of the homeomorphism group of a space on that space. Let X be a topological space and denote the homeomorphism group of X by G. The action is defined as follows: \begin G\times X &\longrightarrow X\\ (\varphi, x) &\longmapsto \varphi(x) \end This is a group action since for all \varphi,\psi\in G, \varphi\cdot(\psi\cdot x)=\varphi(\psi(x))=(\varphi\circ\psi)(x), where \cdot denotes the group action, and the identity element of G (which is the identity function on X) sends points to themselves. If this action is transitive, then the space is said to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy
In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second parameter of ''H'' as time then ''H'' describes a ''continu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Category
In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any model category and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra. The naive homotopy category The category of topological spaces Top has topological spaces as objects and as morphisms the continuous maps between them. The older definition of the homotopy category hTop, called the naive homotopy category for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps ''f'' : ''X'' → ''Y'' are considered the same in the na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current (2023) managing editors are Jean-Benoît Bost (University of Paris-Sud) and Wilhelm Schlag (Yale University Yale University is a Private university, private Ivy League research university in New Haven, Connecticut, United States. Founded in 1701, Yale is the List of Colonial Colleges, third-oldest institution of higher education in the United Stat ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Academic journals established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Split Exact Sequence
The term split exact sequence is used in two different ways by different people. Some people mean a short exact sequence that right-splits (thus corresponding to a semidirect product) and some people mean a short exact sequence that left-splits (which implies it right-splits, and corresponds to a direct product). This article takes the latter approach, but both are in common use. When reading a book or paper, it is important to note precisely which of the two meanings is in use. In mathematics, a split exact sequence is a short exact sequence in which the middle term is built out of the two outer terms in the simplest possible way. Equivalent characterizations A short exact sequence of abelian groups or of modules over a fixed ring, or more generally of objects in an abelian category :0 \to A \mathrel B \mathrel C \to 0 is called split exact if it is isomorphic to the exact sequence where the middle term is the direct sum of the outer ones: :0 \to A \mathrel A \oplus C \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exact Sequence
In mathematics, an exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and group homomorphisms is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other s. For example, one could have an exact sequence of



Homotopy Group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or '' holes'', of a topological space. To define the ''n''th homotopy group, the base-point-preserving maps from an ''n''-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes. Two mappings are homotopic if one can be continuously deformed into the other. These homotopy classes form a group, called the ''n''th homotopy group, \pi_n(X), of the given space ''X'' with base point. Topological spaces with differing homotopy groups are never homeomorphic, but topological spaces that homeomorphic have the same homotopy groups. The notion of homotopy of paths was introduced by Camille Jordan. Introduc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Low-dimensional Topology
In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory. History A number of advances starting in the 1960s had the effect of emphasising low dimensions in topology. The solution by Stephen Smale, in 1961, of the Poincaré conjecture in five or more dimensions made dimensions three and four seem the hardest; and indeed they required new methods, while the freedom of higher dimensions meant that questions could be reduced to computational methods available in surgery theory. Thurston's geometrization conjecture, formulated in the late 1970s, offered a framework that suggeste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact-open Topology
In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory and functional analysis. It was introduced by Ralph Fox in 1945. If the codomain of the functions under consideration has a uniform structure or a metric structure then the compact-open topology is the "topology of uniform convergence on compact sets." That is to say, a sequence of functions converges in the compact-open topology precisely when it converges uniformly on every compact subset of the domain. Definition Let and be two topological spaces, and let denote the set of all continuous maps between and . Given a compact subset of and an open subset of , let denote the set of all functions such that In other words, V(K, U) = C(K, U) \times_ C(X, Y). Then the collection of all such is a subbase for the compact- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]