Limit Point Compact
In mathematics, a topological space X is said to be limit point compactSteen & Seebach, p. 19 or weakly countably compact if every infinite subset of X has a limit point in X. This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent. Properties and examples * In a topological space, subsets without limit point are exactly those that are closed and discrete in the subspace topology. So a space is limit point compact if and only if all its closed discrete subsets are finite. * A space X is limit point compact if and only if it has an infinite closed discrete subspace. Since any subset of a closed discrete subset of X is itself closed in X and discrete, this is equivalent to require that X has a countably infinite closed discrete subspace. * Some examples of spaces that are not limit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Odd-even Topology
In mathematics, a partition topology is a topology that can be induced on any set X by partitioning X into disjoint subsets P; these subsets form the basis for the topology. There are two important examples which have their own names: * The is the topology where X = \N and P = . Equivalently, P = \. * The is defined by letting X = \begin \bigcup_ (n-1,n) \subseteq \Reals \end and P = . The trivial partitions yield the discrete topology (each point of X is a set in P, so P = \) or indiscrete topology (the entire set X is in P, so P = \). Any set X with a partition topology generated by a partition P can be viewed as a pseudometric space with a pseudometric given by: d(x, y) = \begin 0 & \text x \text y \text \\ 1 & \text. \end This is not a metric unless P yields the discrete topology. The partition topology provides an important example of the independence of various separation axioms. Unless P is trivial, at least one set in P contains more than one point, and the element ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Counterexamples In Topology
''Counterexamples in Topology'' (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr. In the process of working on problems like the metrization problem, topologists (including Steen and Seebach) have defined a wide variety of topological properties. It is often useful in the study and understanding of abstracts such as topological spaces to determine that one property does not follow from another. One of the easiest ways of doing this is to find a counterexample which exhibits one property but not the other. In ''Counterexamples in Topology'', Steen and Seebach, together with five students in an undergraduate research project at St. Olaf College, Minnesota in the summer of 1967, canvassed the field of topology for such counterexamples and compiled them in an attempt to simplify the literature. For instance, an example of a first-countable space which is not second-countable is counterexample #3, the discrete topology on an u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cardinal Function
In mathematics, a cardinal function (or cardinal invariant) is a function that returns cardinal numbers. Cardinal functions in set theory * The most frequently used cardinal function is the function that assigns to a set ''A'' its cardinality, denoted by , ''A'', . * Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers. * Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers. * Cardinal characteristics of a (proper) ideal ''I'' of subsets of ''X'' are: :(I) = \min\. ::The "additivity" of ''I'' is the smallest number of sets from ''I'' whose union is not in ''I'' any more. As any ideal is closed under finite unions, this number is always at least \aleph_0; if ''I'' is a σ-ideal, then \operatorname(I) \ge \aleph_1. :\operatorname(I) = \min\. :: The "covering number" of ''I'' is the smallest number of sets from ''I'' whose union is all of ''X''. As ''X'' itself is not ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tietze Extension Theorem
In topology, the Tietze extension theorem (also known as the Tietze– Urysohn– Brouwer extension theorem or Urysohn-Brouwer lemma) states that any real-valued, continuous function on a closed subset of a normal topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ... can be extended to the entire space, preserving boundedness if necessary. Formal statement If X is a normal space and f : A \to \R is a continuous map from a closed subset A of X into the real numbers \R carrying the standard topology, then there exists a of f to X; that is, there exists a map F : X \to \R continuous on all of X with F(a) = f(a) for all a \in A. Moreover, F may be chosen such that \sup \ ~=~ \sup \, that is, if f is bounded then F may be chosen to be bounded (with the same bo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cocountable Topology
The cocountable topology, also known as the countable complement topology, is a topology that can be defined on any infinite set X. In this topology, a set is open if its complement in X is either countable or equal to the entire set. Equivalently, the open sets consist of the empty set and all subsets of X whose complements are countable, a property known as cocountability. The only closed sets in this topology are X itself and the countable subsets of X. Definitions Let X be an infinite set and let \mathcal be the set of subsets of X such that H \in \mathcal \iff X \setminus H \mbox\, H = \varnothing then \mathcal is the countable complement toplogy on X , and the topological space T = ( X , \mathcal ) is a countable complement space. Symbolically, the topology is typically written as \mathcal = \. Double pointed cocountable topology Let X be an uncountable set. We define the topology \mathcal as all open sets whose complements are countable, along with \varn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudocompact
In mathematics, in the field of topology, a topological space is said to be pseudocompact if its image under any continuous function to R is bounded. Many authors include the requirement that the space be completely regular in the definition of pseudocompactness. Pseudocompact spaces were defined by Edwin Hewitt in 1948. Properties related to pseudocompactness * For a Tychonoff space ''X'' to be pseudocompact requires that every locally finite collection of non-empty open sets of ''X'' be finite. There are many equivalent conditions for pseudocompactness (sometimes some separation axiom should be assumed); a large number of them are quoted in Stephenson 2003. Some historical remarks about earlier results can be found in Engelking 1989, p. 211. *Every countably compact space is pseudocompact. For normal Hausdorff spaces the converse is true. *As a consequence of the above result, every sequentially compact space is pseudocompact. The converse is true for metric spaces. A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sequentially Compact Space
In mathematics, a topological space ''X'' is sequentially compact if every sequence of points in ''X'' has a convergent subsequence converging to a point in X. Every metric space is naturally a topological space, and for metric spaces, the notions of compactness and sequential compactness are equivalent (if one assumes countable choice). However, there exist sequentially compact topological spaces that are not compact, and compact topological spaces that are not sequentially compact. Examples and properties The space of all real numbers with the standard topology is not sequentially compact; the sequence (s_n) given by s_n = n for all natural numbers ''n'' is a sequence that has no convergent subsequence. If a space is a metric space, then it is sequentially compact if and only if it is compact. The first uncountable ordinal with the order topology is an example of a sequentially compact topological space that is not compact. The topological product of 2^=\mathfrak c cop ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order Topology
In mathematics, an order topology is a specific topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If ''X'' is a totally ordered set, the order topology on ''X'' is generated by the subbase of "open rays" :\ :\ for all ''a, b'' in ''X''. Provided ''X'' has at least two elements, this is equivalent to saying that the open intervals :(a,b) = \ together with the above rays form a base for the order topology. The open sets in ''X'' are the sets that are a union of (possibly infinitely many) such open intervals and rays. A topological space ''X'' is called orderable or linearly orderable if there exists a total order on its elements such that the order topology induced by that order and the given topology on ''X'' coincide. The order topology makes ''X'' into a completely normal Hausdorff space. The standard topologies on R, Q, Z, and N are the order topologies. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
T0 Space
T, or t, is the twentieth letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''tee'' (pronounced ), plural ''tees''. It is derived from the Semitic Taw 𐤕 of the Phoenician and Paleo-Hebrew script (Aramaic and Hebrew Taw ת/𐡕/, Syriac Taw ܬ, and Arabic ت Tāʼ) via the Greek letter τ (tau). In English, it is most commonly used to represent the voiceless alveolar plosive, a sound it also denotes in the International Phonetic Alphabet. It is the most commonly used consonant and the second-most commonly used letter in English-language texts. History '' Taw'' was the last letter of the Western Semitic and Hebrew alphabets. The sound value of Semitic ''Taw'', the Greek alphabet Tαυ (''Tau''), Old Italic and Latin T has remained fairly constant, representing in each of these, and it has also kept its original basic shape in most of these alphabets. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indiscrete Topology
In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the consequence that all points of the space are "lumped together" and cannot be distinguished by topological means. Every indiscrete space can be viewed as a pseudometric space in which the distance between any two points is zero. Details The trivial topology is the topology with the least possible number of open sets, namely the empty set and the entire space, since the definition of a topology requires these two sets to be open. Despite its simplicity, a space ''X'' with more than one element and the trivial topology lacks a key desirable property: it is not a T0 space. Other properties of an indiscrete space ''X''—many of which are quite unusual—include: * The only closed sets are the empty set and ''X''. * The only possible basi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
James Munkres
James Raymond Munkres (born ) is a Professor Emeritus of mathematics at MIT and the author of several texts in the area of topology, including ''Topology'' (an undergraduate-level text), ''Analysis on Manifolds'', ''Elements of Algebraic Topology'', and ''Elementary Differential Topology''. He is also the author of ''Elementary Linear Algebra''. Munkres completed his undergraduate education at Nebraska Wesleyan UniversityMathematics , '' The Tech'', Volume 119, Issue 33, August 27, 1999 and received his Ph.D. from the University of ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |