In
mathematics, the partition topology is a
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
that can be induced on any set
by
partitioning into disjoint subsets
these subsets form the
basis
Basis may refer to:
Finance and accounting
*Adjusted basis, the net cost of an asset after adjusting for various tax-related items
*Basis point, 0.01%, often used in the context of interest rates
* Basis trading, a trading strategy consisting o ...
for the topology. There are two important examples which have their own names:
* The is the topology where
and
Equivalently,
* The is defined by letting
and
The trivial partitions yield the
discrete topology
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are ''isolated'' from each other in a certain sense. The discrete topology is the finest t ...
(each point of
is a set in
so
) or
indiscrete topology In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the conseque ...
(the entire set
is in
so
).
Any set
with a partition topology generated by a partition
can be viewed as a
pseudometric space
In mathematics, a pseudometric space is a generalization of a metric space in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by Đuro Kurepa in 1934. In the same way as every normed space is a metr ...
with a pseudometric given by:
This is not a
metric
Metric or metrical may refer to:
* Metric system, an internationally adopted decimal system of measurement
* An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement
Mathematics
In mathem ...
unless
yields the discrete topology.
The partition topology provides an important example of the independence of various
separation axioms
In topology and related fields of mathematics, there are several restrictions that one often makes on the kinds of topological spaces that one wishes to consider. Some of these restrictions are given by the separation axioms. These are sometime ...
. Unless
is trivial, at least one set in
contains more than one point, and the elements of this set are
topologically indistinguishable
In topology, two points of a topological space ''X'' are topologically indistinguishable if they have exactly the same neighborhoods. That is, if ''x'' and ''y'' are points in ''X'', and ''Nx'' is the set of all neighborhoods that contain ''x'', ...
: the topology does not separate points. Hence
is not a
Kolmogorov space
In topology and related branches of mathematics, a topological space ''X'' is a T0 space or Kolmogorov space (named after Andrey Kolmogorov) if for every pair of distinct points of ''X'', at least one of them has a neighborhood not containing t ...
, nor a
T1 space, a
Hausdorff space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many ...
or an
Urysohn space. In a partition topology the complement of every open set is also open, and therefore a set is open if and only if it is closed. Therefore,
is
regular
The term regular can mean normal or in accordance with rules. It may refer to:
People
* Moses Regular (born 1971), America football player
Arts, entertainment, and media Music
* "Regular" (Badfinger song)
* Regular tunings of stringed instrum ...
,
completely regular
In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space refers to any completely regular space that i ...
,
normal Normal(s) or The Normal(s) may refer to:
Film and television
* ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson
* ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie
* ''Norma ...
and
completely normal
In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. T ...
.
is the discrete topology.
See also
*
References
* {{Citation , last1=Steen , first1=Lynn Arthur , author1-link=Lynn Arthur Steen , last2=Seebach , first2=J. Arthur Jr. , author2-link=J. Arthur Seebach, Jr. , title=
Counterexamples in Topology
''Counterexamples in Topology'' (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr.
In the process of working on problems like the metrization problem, topologists (including Steen and Seebach) ...
, origyear=1978 , publisher=
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing.
Originally founded in 1842 ...
, location=Berlin, New York , edition=
Dover
Dover () is a town and major ferry port in Kent, South East England. It faces France across the Strait of Dover, the narrowest part of the English Channel at from Cap Gris Nez in France. It lies south-east of Canterbury and east of Maidstone ...
reprint of 1978 , isbn=978-0-486-68735-3 , mr=507446 , year=1995
Topological spaces