Holomorphic Curve
   HOME





Holomorphic Curve
In mathematics, in the field of complex geometry, a holomorphic curve in a complex manifold ''M'' is a non-constant holomorphic map ''f'' from the complex plane to ''M''., p.553 Nevanlinna theory addresses the question of the distribution of values of a holomorphic curve in the complex projective line. See also * Pseudoholomorphic curve In mathematics, specifically in topology and geometry, a pseudoholomorphic curve (or ''J''-holomorphic curve) is a smooth map, from a Riemann surface into an almost complex manifold, that satisfies the Cauchy–Riemann equations. Introduced in 1985 ... Notes References * Complex manifolds {{mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Complex Geometry
In mathematics, complex geometry is the study of geometry, geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of space (mathematics), spaces such as complex manifolds and Complex algebraic variety, complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaf, coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis. Complex geometry sits at the intersection of algebraic geometry, differential geometry, and complex analysis, and uses tools from all three areas. Because of the blend of techniques and ideas from various areas, problems in complex geometry are often more tractable or concrete than in general. For example, the classification of complex manifolds and complex algebraic varieties ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such that the transition maps are Holomorphic function, holomorphic. The term "complex manifold" is variously used to mean a complex manifold in the sense above (which can be specified as an ''integrable'' complex manifold) or an almost complex manifold, ''almost'' complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth manifold, smooth and complex manifolds have very different flavors: compact space, compact complex manifolds are much closer to algebraic variety, algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be Embedding, embedded as a smooth subma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Holomorphic Map
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: It implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (is '' analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term ''analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Complex Plane
In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows for a geometric interpretation of complex numbers. Under addition, they add like vector (geometry), vectors. The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or ' of the product is the product of the two absolute values, or moduli, and the angle or ' of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a rotation. The complex plane is sometimes called the Argand plane or Gauss plane. Notational conventions Complex numbers In complex analysis, the complex numbers are customarily represented by the symbol , which can be sepa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Nevanlinna Theory
In the mathematical field of complex analysis, Nevanlinna theory is part of the theory of meromorphic functions. It was devised in 1925, by Rolf Nevanlinna. Hermann Weyl called it "one of the few great mathematical events of (the twentieth) century." The theory describes the asymptotic distribution of solutions of the equation ''f''(''z'') = ''a'', as ''a'' varies. A fundamental tool is the Nevanlinna characteristic ''T''(''r'', ''f'') which measures the rate of growth of a meromorphic function. Other main contributors in the first half of the 20th century were Lars Ahlfors, André Bloch, Henri Cartan, Edward Collingwood, Otto Frostman, Frithiof Nevanlinna, Henrik Selberg, Tatsujiro Shimizu, Oswald Teichmüller, and Georges Valiron. In its original form, Nevanlinna theory deals with meromorphic functions of one complex variable defined in a disc , ''z'', ≤ ''R'' or in the whole complex plane (''R'' = ∞). Subsequent generalizations extended Nevanlinna theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Projective Line
In projective geometry and mathematics more generally, a projective line is, roughly speaking, the extension of a usual line by a point called a '' point at infinity''. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; for example, two distinct projective lines in a projective plane meet in exactly one point (there is no "parallel" case). There are many equivalent ways to formally define a projective line; one of the most common is to define a projective line over a field ''K'', commonly denoted P1(''K''), as the set of one-dimensional subspaces of a two-dimensional ''K''-vector space. This definition is a special instance of the general definition of a projective space. The projective line over the reals is a manifold; see '' Real projective line'' for details. Homogeneous coordinates An arbitrary point in the projective line P1(''K'') may be represented by an equivalence class of '' homogeneous coordi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Pseudoholomorphic Curve
In mathematics, specifically in topology and geometry, a pseudoholomorphic curve (or ''J''-holomorphic curve) is a smooth map, from a Riemann surface into an almost complex manifold, that satisfies the Cauchy–Riemann equations. Introduced in 1985 by Mikhail Gromov, pseudoholomorphic curves have since revolutionized the study of symplectic manifolds. In particular, they lead to the Gromov–Witten invariants and Floer homology, and play a prominent role in string theory. Definition Let X be an almost complex manifold with almost complex structure J. Let C be a smooth Riemann surface (also called a complex curve) with complex structure j. A pseudoholomorphic curve in X is a map f : C \to X that satisfies the Cauchy–Riemann equation :\bar \partial_ f := \frac(df + J \circ df \circ j) = 0. Since J^2 = -1, this condition is equivalent to :J \circ df = df \circ j, which simply means that the differential df is complex-linear, that is, J maps each tangent space :T_xf(C)\subseteq T_x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. See also *'' Journal of the American Mathematical Society'' *'' Memoirs of the American Mathematical Society'' *'' Notices of the American Mathematical Society'' *'' Proceedings of the Ame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]