Hemispherical Electron Energy Analyzer
A hemispherical electron energy analyzer or hemispherical deflection analyzer is a type of electron energy spectrometer generally used for applications where high energy resolution is needed—different varieties of electron spectroscopy such as angle-resolved photoemission spectroscopy (ARPES), X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) or in imaging applications such as photoemission electron microscopy (PEEM) and low-energy electron microscopy (LEEM). It consists of two concentric conductive hemispheres that serve as electrodes that bend the trajectories of the electrons entering a narrow slit at one end so that their final radii depend on their kinetic energy. The analyzer, therefore, provides a mapping from kinetic energies to positions on a detector. Function An ideal hemispherical analyzer consists of two concentric hemispherical electrodes (inner and outer hemispheres) of radii R_ and R_ held at proper voltages. In such a system, the ele ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Hemispherical Electron Energy Analyzer Working Principle
A sphere (from Greek , ) is a surface analogous to the circle, a curve. In solid geometry, a sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ''center'' of the sphere, and the distance is the sphere's ''radius''. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians. The sphere is a fundamental surface in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings. Basic terminology As mentioned earlier is t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Laplace's Equation
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties in 1786. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nabla \cdot \nabla = \nabla^2 is the Laplace operator,The delta symbol, Δ, is also commonly used to represent a finite change in some quantity, for example, \Delta x = x_1 - x_2. Its use to represent the Laplacian should not be confused with this use. \nabla \cdot is the divergence operator (also symbolized "div"), \nabla is the gradient operator (also symbolized "grad"), and f (x, y, z) is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function. If the right-hand side is specified as a given function, h(x, y, z), we have \Delta f = h This is called Poisson's equation, a generalization of Laplace's equation. Laplace's equation and Poisson's equation are the simp ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Hemispherical Electron Energy Analyzer - Dispersion With Respect To Kinetic Energy, Initial Radius, And Impinging Angle
A sphere (from Greek , ) is a surface analogous to the circle, a curve. In solid geometry, a sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ''center'' of the sphere, and the distance is the sphere's ''radius''. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians. The sphere is a fundamental surface in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings. Basic terminology As mentioned earlier is t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Great Circle
In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Discussion Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geometry are the natural analog of straight lines in Euclidean space. For any pair of distinct non- antipodal points on the sphere, there is a unique great circle passing through both. (Every great circle through any point also passes through its antipodal point, so there are infinitely many great circles through two antipodal points.) The shorter of the two great-circle arcs between two distinct points on the sphere is called the ''minor arc'', and is the shortest surface-path between them. Its arc length is the great-circle distance between the points (the intrinsic distance on a sphere), and is proportional to the measure of the central angle formed by the two points and the center of the sphere. A great circle is the largest ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Phosphorescence
Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluorescence, a phosphorescent material does not immediately reemit the radiation it absorbs. Instead, a phosphorescent material absorbs some of the radiation energy and reemits it for a much longer time after the radiation source is removed. In a general sense, there is no distinct boundary between the emission times of fluorescence and phosphorescence (i.e.: if a substance glows under a black light it is generally considered fluorescent, and if it glows in the dark it is often simply called phosphorescent). In a modern, scientific sense, the phenomena can usually be classified by the three different mechanisms that produce the light, and the typical timescales during which those mechanisms emit light. Whereas fluorescent materials stop emitti ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Microchannel Plate Detector
A microchannel plate (MCP) is used to detect single particles (electrons, ions and neutrons) and photons (ultraviolet radiation and X-rays). It is closely related to an electron multiplier, as both intensify single particles or photons by the multiplication of electrons via secondary emission. Because a microchannel plate detector has many separate channels, it can provide spatial resolution. Basic design A microchannel plate is a slab made from resistive material (most often glass) 0.5 to 2mm thick with a regular array of tiny tubes (microchannels) leading from one face to the other. The microchannels are typically 5-20 micrometers in diameter, parallel to each other and enter the plate at a small angle to the surface (8-13° from normal). Plates are often round disks, but can be cut to any shape from sizes 10mm up to 200mm. They may also be curved. Operating mode At non-relativistic energies, single particles generally produce effects too small to enable their direct det ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Centripetal Force
Centripetal force (from Latin ''centrum'', "center" and ''petere'', "to seek") is the force that makes a body follow a curved trajectory, path. The direction of the centripetal force is always orthogonality, orthogonal to the motion of the body and towards the fixed point of the instantaneous osculating circle, center of curvature of the path. Isaac Newton coined the term, describing it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits. One common example involving centripetal force is the case in which a body moves with uniform speed along a circular path. The centripetal force is directed at right angles to the motion and also along the radius towards the centre of the circular path. The mathematical description was derived in 1659 by the Dutch physicist Christiaan Huygens. Formula From the kinematics of curved motion it is known ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Hemispherical Electron Energy Analyzer - Calculated Trajectories For Different Energies And Initial Angles
A sphere (from Greek , ) is a surface analogous to the circle, a curve. In solid geometry, a sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ''center'' of the sphere, and the distance is the sphere's ''radius''. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians. The sphere is a fundamental surface in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings. Basic terminology As mentioned earlier is t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Electron Spectroscopy
Electron spectroscopy refers to a group formed by techniques based on the analysis of the energies of emitted electrons such as Photoelectric effect, photoelectrons and Auger electrons. This group includes X-ray photoelectron spectroscopy (XPS), which also known as Electron Spectroscopy for Chemical Analysis (ESCA), Electron energy loss spectroscopy (EELS), Ultraviolet photoelectron spectroscopy (UPS), and Auger electron spectroscopy (AES). These analytical techniques are used to identify and determine the elements and their electronic structures from the surface of a test sample. Samples can be solids, gases or liquids.Yang Leng; ''Materials Characterization: Introduction to Microscopic and Spectroscopic Methods (Second Edition)''; Publisher John Wiley & Sons, Incorporated 2013; p: 191-192, 221-224.Daintith, J.; ''Dictionary of Chemistry (6th Edition)''; Oxford University Press, 2008; p: 191, 416, 541 Chemical information is obtained only from the uppermost atomic layers of the sam ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Hemispherical Electron Energy Analyzer - Calculated Trajectories For Different Energies And Initial Offsets Within The Slit
A sphere (from Greek , ) is a surface analogous to the circle, a curve. In solid geometry, a sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ''center'' of the sphere, and the distance is the sphere's ''radius''. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians. The sphere is a fundamental surface in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings. Basic terminology As mentioned earlier is t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |