Helmholtz
Hermann Ludwig Ferdinand von Helmholtz (; ; 31 August 1821 – 8 September 1894; "von" since 1883) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Association, the largest German association of research institutions, was named in his honour. In the fields of physiology and psychology, Helmholtz is known for his mathematics concerning the eye, theories of vision, ideas on the visual perception of space, colour vision research, the sensation of tone, perceptions of sound, and empiricism in the physiology of perception. In physics, he is known for his theories on the conservation of energy and on the electrical double layer, work in electrodynamics, chemical thermodynamics, and on a mechanical foundation of thermodynamics. Although credit is shared with Julius von Mayer, James Joule, and Daniel Bernoulli—among others—for the energy conservation principles that eventual ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmholtz Resonance
Helmholtz resonance, also known as wind throb, refers to the phenomenon of air resonance in a cavity, an effect named after the German physicist Hermann von Helmholtz. This type of resonance occurs when air is forced in and out of a cavity (the resonance chamber), causing the air inside to vibrate at a specific natural frequency. The principle is widely observable in everyday life, notably when blowing across the top of a bottle, resulting in a resonant tone. The concept of Helmholtz resonance is fundamental in various fields, including acoustics, engineering, and physics. The resonator itself, termed a ''Helmholtz resonator'', consists of two key components: a cavity and a neck. The size and shape of these components are crucial in determining the resonant frequency, which is the frequency at which the system naturally oscillates. In the context of acoustics, Helmholtz resonance is instrumental in the design and analysis of musical instruments, architectural acoustics, and soun ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmholtz Decomposition
In physics and mathematics, the Helmholtz decomposition theorem or the fundamental theorem of vector calculus states that certain differentiable vector fields can be resolved into the sum of an irrotational ( curl-free) vector field and a solenoidal (divergence-free) vector field. In physics, often only the decomposition of sufficiently smooth, rapidly decaying vector fields in three dimensions is discussed. It is named after Hermann von Helmholtz. Definition For a vector field \mathbf \in C^1(V, \mathbb^n) defined on a domain V \subseteq \mathbb^n, a Helmholtz decomposition is a pair of vector fields \mathbf \in C^1(V, \mathbb^n) and \mathbf \in C^1(V, \mathbb^n) such that: \begin \mathbf(\mathbf) &= \mathbf(\mathbf) + \mathbf(\mathbf), \\ \mathbf(\mathbf) &= - \nabla \Phi(\mathbf), \\ \nabla \cdot \mathbf(\mathbf) &= 0. \end Here, \Phi \in C^2(V, \mathbb) is a scalar potential, \nabla \Phi is its gradient, and \nabla \cdot \mathbf is the divergence of the vector fiel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmholtz Coil
A Helmholtz coil is a device for producing a region of nearly uniform magnetic field, named after the German physicist Hermann von Helmholtz. It consists of two electromagnets on the same axis, carrying an equal electric current in the same direction. Besides creating magnetic fields, Helmholtz coils are also used in scientific apparatus to cancel external magnetic fields, such as the Earth's magnetic field. Description A Helmholtz pair consists of two identical circular magnetic coils that are placed symmetrically along a common axis, one on each side of the experimental area, and separated by a distance h equal to the radius R of the coil. Each coil carries an equal electric current in the same direction. Setting h=R, which is what defines a Helmholtz pair, minimizes the nonuniformity of the field at the center of the coils, in the sense of setting \partial^B/\partial x^ = 0 (meaning that the first nonzero derivative is \partial^B/\partial x^ as explained below), but leave ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmholtz Equation
In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the elliptic partial differential equation: \nabla^2 f = -k^2 f, where is the Laplace operator, is the eigenvalue, and is the (eigen)function. When the equation is applied to waves, is known as the wave number. The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. The equation is named after Hermann von Helmholtz, who studied it in 1860. from the Encyclopedia of Mathematics. Motivation and uses The Helmholtz equation often arises in the study of physical problems involving par ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kelvin–Helmholtz Instability
The Kelvin–Helmholtz instability (after Lord Kelvin and Hermann von Helmholtz) is a fluid instability that occurs when there is shear velocity, velocity shear in a single continuum mechanics, continuous fluid or a velocity difference across the interface between two fluids. Kelvin-Helmholtz instabilities are visible in the atmospheres of planets and moons, such as in List of cloud types, cloud formations on Earth or the Great Red Spot#Great Red Spot, Red Spot on Jupiter, and the Stellar atmosphere, atmospheres of the Sun and other stars. Theory overview and mathematical concepts Fluid dynamics predicts the onset of instability and transition to turbulent flow within fluids of different density, densities moving at different speeds. If surface tension is ignored, two fluids in parallel motion with different velocities and densities yield an interface that is unstable to short-wavelength perturbations for all speeds. However, surface tension is able to stabilize the short w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmholtz Pitch Notation
Helmholtz pitch notation is a system for naming musical notes of the Western chromatic scale. Fully described and normalized by the German scientist Hermann von Helmholtz, it uses a combination of upper and lower case letters (A to G), and the sub- and super- prime symbols ( ͵ or ) to denote each individual note of the scale. It is one of two formal systems for naming notes in a particular octave, the other being scientific pitch notation. History Helmholtz proposed this system in order to accurately define pitches in his classical work on acoustics ''Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik'' (1863) translated into English by A.J. Ellis as '' On the Sensations of Tone'' (1875). Helmholtz based his notation on the practice of German organ builders for labelling their pipes, itself derived from the old German organ tablature in use from late medieval times until the early 18th century. His system is widely ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmholtz Reciprocity
The Helmholtz reciprocity principle describes how a ray of light and its reverse ray encounter matched optical adventures, such as reflections, refractions, and absorptions in a passive medium, or at an interface. It does not apply to moving, non-linear, or magnetic media. For example, incoming and outgoing light can be considered as reversals of each other,Hapke, B. (1993). ''Theory of Reflectance and Emittance Spectroscopy'', Cambridge University Press, Cambridge UK, , Section 10C, pages 263-264. without affecting the bidirectional reflectance distribution function (BRDF) outcome. If light was measured with a sensor and that light reflected on a material with a BRDF that obeys the Helmholtz reciprocity principle one would be able to swap the sensor and light source and the measurement of flux would remain equal. In the computer graphics scheme of global illumination, the Helmholtz reciprocity principle is important if the global illumination algorithm reverses light paths ( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmholtz Free Energy
In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature ( isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium. In contrast, the Gibbs free energy or free enthalpy is most commonly used as a measure of thermodynamic potential (especially in chemistry) when it is convenient for applications that occur at constant ''pressure''. For example, in explosives research Helmholtz free energy is often used, since explosive reactions by their nature induce pressure changes. It is also frequently used to define fundamental equations of state of pure substances. The concept of free energy was developed by Hermann von Helmholtz, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmholtz–Kohlrausch Effect
The Helmholtz–Kohlrausch effect (named after Hermann von Helmholtz and V. A. Kohlrausch) is a perceptual phenomenon wherein the intense saturation of spectral hue is perceived as part of the color's luminance. This brightness increase by saturation, which grows stronger as saturation increases, might better be called chromatic luminance, since "white" or achromatic luminance is the standard of comparison. It appears in both self-luminous and surface colors, although it is most pronounced in spectral (monochromatic) colors. Lightness Even when they have the same luminance, colored lights seem brighter to human observers than white light does. The way humans perceive the brightness of the lights is different for everyone. When the colors are more saturated, our eyes interpret it as the color's luminance and chroma. This makes us believe that the colors are actually brighter. An exception to this is when the human observer is red-green colorblind, they cannot distinguish the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Violin Acoustics
Violin acoustics is an area of study within musical acoustics concerned with how the sound of a violin is created as the result of interactions between its many parts. These acoustic qualities are similar to those of other members of the violin family, such as the viola. The energy of a vibrating string is transmitted through the bridge to the body of the violin, which allows the sound to radiate into the surrounding air. Both ends of a violin string are effectively stationary, allowing for the creation of standing waves. A range of simultaneously produced harmonics each affect the timbre, but only the fundamental frequency is heard. The frequency of a note can be raised by the increasing the string's tension, or decreasing its length or mass. The number of harmonics present in the tone can be reduced, for instance by the using the left hand to shorten the string length. The loudness and timbre of each of the strings is not the same, and the material used affects sound qu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helmholtz-Ellis Notation
In music, just intonation or pure intonation is a tuning system in which the space between notes' frequencies (called intervals) is a whole number ratio. Intervals spaced in this way are said to be pure, and are called just intervals. Just intervals (and chords created by combining them) consist of tones from a single harmonic series of an implied fundamental. For example, in the diagram, if the notes G3 and C4 (labelled 3 and 4) are tuned as members of the harmonic series of the lowest C, their frequencies will be 3 and 4 times the fundamental frequency. The interval ratio between C4 and G3 is therefore 4:3, a just fourth. In Western musical practice, bowed instruments such as violins, violas, cellos, and double basses are tuned using pure fifths or fourths. In contrast, keyboard instruments are rarely tuned using only pure intervals—the desire for different keys to have identical intervals in Western music makes this impractical. Some instruments of fixed pitch, such as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |