Hafnocene Dichloride
   HOME





Hafnocene Dichloride
Hafnocene dichloride is the organohafnium compound with the formula . It is a white solid that is sparingly soluble in some organic solvents. The lighter homologues zirconacene dichloride and titanocene dichloride have received much more attention. While hafnocene is only of academic interest, some more soluble derivatives are precatalysts for olefin polymerization. Moreso than the Zr analogue, this compound is highly resistant to reduction. It is prepared by a salt metathesis reaction from hafnium tetrachloride by salt metathesis: : Derivatives Hydrolysis gives the trimer . The chloride ligands can be replaced by other halides. The bis(phosphide In chemistry, a phosphide is a compound containing the ion or its equivalent. Many different phosphides are known, with widely differing structures. Most commonly encountered on the binary phosphides, i.e. those materials consisting only of pho ...) can be prepared by salt metathesis from hafnocene dichloride. References {{C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Organohafnium Compound
Organozirconium chemistry is the science of exploring the properties, structure, and reactivity of organozirconium compounds, which are organometallic compounds containing chemical bonds between carbon and zirconium. Organozirconium compounds have been widely studied, in part because they are useful catalysts in Ziegler-Natta polymerization. Comparison with organotitanium chemistry Many organozirconium compounds have analogues on organotitanium chemistry. Zirconium(IV) is more resistant to reduction than titanium(IV) compounds, which often convert to Ti(III) derivatives. By the same token, Zr(II) is a particularly powerful reducing agent, forming robust dinitrogen complexes. Being a larger atom, zirconium forms complexes with higher coordination numbers, e.g. polymeric pZrCl3sub>n vs monomeric CpTiCl3 (Cp = C5H5). History Zirconocene dibromide was prepared in 1953 by a reaction of the cyclopentadienyl magnesium bromide and zirconium(IV) chloride. In 1966, the dihydride Cp2ZrH2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zirconacene Dichloride
Zirconocene dichloride is an organozirconium compound composed of a zirconium central atom, with two cyclopentadienyl and two chloro ligands. It is a colourless diamagnetic solid that is somewhat stable in air. Preparation and structure Zirconocene dichloride may be prepared from zirconium(IV) chloride-tetrahydrofuran complex and sodium cyclopentadienide: :ZrCl4(THF)2 + 2 NaCp → Cp2ZrCl2 + 2 NaCl + 2 THF The closely related compound Cp2ZrBr2 was first described by Birmingham and Wilkinson. The compound is a bent metallocene: the Cp rings are not parallel, the average Cp(centroid)-M-Cp angle being 128°. The Cl-Zr-Cl angle of 97.1° is wider than in niobocene dichloride (85.6°) and molybdocene dichloride (82°). This trend helped to establish the orientation of the HOMO in this class of complex. Reactions Schwartz's reagent Zirconocene dichloride reacts with lithium aluminium hydride to give Cp2ZrHCl Schwartz's reagent: :(C5H5)2ZrCl2 + 1/4 LiAlH4 → (C5H5)2ZrHCl + 1/4 LiAlC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Titanocene Dichloride
Titanocene dichloride is the organotitanium compound with the formula (hapticity, ''η''5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug. Preparation and structure The standard preparations of Cp2TiCl2 start with titanium tetrachloride. The original synthesis by Geoffrey Wilkinson, Wilkinson and Birmingham, using sodium cyclopentadienide, is still commonly used: :2 NaC5H5 + TiCl4 → (C5H5)2TiCl2 + 2 NaCl It can also be prepared by using freshly distilled cyclopentadiene rather than its sodium derivative: :2 C5H6 + TiCl4 → (C5H5)2TiCl2 + 2 HCl Focusing on the geometry of the Ti center, Cp2TiCl2 adopts a distorted tetrahedral geometry (counting Cp as a monodentate ligand). The Ti-Cl distance is 2.37 Å ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Catalyst
Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quickly, very small amounts of catalyst often suffice; mixing, surface area, and temperature are important factors in reaction rate. Catalysts generally react with one or more reactants to form intermediates that subsequently give the final reaction product, in the process of regenerating the catalyst. The rate increase occurs because the catalyst allows the reaction to occur by an alternative mechanism which may be much faster than the noncatalyzed mechanism. However the noncatalyzed mechanism does remain possible, so that the total rate (catalyzed plus noncatalyzed) can only increase in the presence of the catalyst and never decrease. Catalysis may be classified as either homogeneous, whose components are dispersed in the same phase (usual ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Olefin Polymerization
In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or at the terminal position. Terminal alkenes are also known as α-olefins. The International Union of Pure and Applied Chemistry (IUPAC) recommends using the name "alkene" only for acyclic hydrocarbons with just one double bond; alkadiene, alkatriene, etc., or polyene for acyclic hydrocarbons with two or more double bonds; cycloalkene, cycloalkadiene, etc. for cyclic ones; and "olefin" for the general class – cyclic or acyclic, with one or more double bonds. Acyclic alkenes, with only one double bond and no other functional groups (also known as mono-enes) form a homologous series of hydrocarbons with the general formula with ''n'' being a >1 natural number (which is two hydrogens less than the corresponding alkane). When ''n'' is four or more, isomers are possible, distinguished by the position and conformation of the double bond. Al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE