Golygon
A golygon, or more generally a serial isogon of 90°, is any polygon with all right angles (a rectilinear polygon) whose sides are consecutive integer lengths. Golygons were invented and named by Lee Sallows, and popularized by A.K. Dewdney in a 1990 ''Scientific American'' column (Smith). Variations on the definition of golygons involve allowing edges to cross, using sequences of edge lengths other than the consecutive integers, and considering turn angles other than 90°. Properties In any golygon, all horizontal edges have the same parity as each other, as do all vertical edges. Therefore, the number ''n'' of sides must allow the solution of the system of equations :\pm 1 \pm 3 \pm \cdots \pm (n-1) = 0 :\pm 2 \pm 4 \pm \cdots \pm n = 0. It follows from this that ''n'' must be a multiple of 8. For example, in the figure we have -1 + 3 + 5 - 7 = 0 and 2 - 4 - 6 + 8 = 0. The number of golygons for a given permissible value of ''n'' may be computed efficiently using generating ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lee Sallows
Lee Cecil Fletcher Sallows (born April 30, 1944) is a British electronics engineer known for his contributions to recreational mathematics. He is particularly noted as the inventor of golygons, self-enumerating sentences, and geomagic squares. Recreational mathematics Sallows is an expert on the theory of magic squares and has invented several variations on them, including alphamagic squares and geomagic squares. The latter invention caught the attention of mathematician Peter Cameron (mathematician), Peter Cameron who has said that he believes that "an even deeper structure may lie hidden beyond geomagic squares" In "The lost theorem" published in 1997 he showed that every 3 × 3 magic square is associated with a unique parallelogram on the complex plane, a discovery that had escaped all previous researchers from ancient times down to the present day. A golygon is a polygon containing only right angles, such that adjacent sides exhibit consecutive integer lengt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spirolateral
In Euclidean geometry, a spirolateral is a polygon created by a sequence of fixed vertex internal angles and sequential edge lengths 1,2,3,...,''n'' which repeat until the figure closes. The number of repeats needed is called its cycles. Gardner, M. ''Worm Paths'' Ch. 17 ''Knotted Doughnuts and Other Mathematical Entertainments'' New York: W. H. Freeman, pp. 205-221, 1986/ref> A ''simple spirolateral'' has only positive angles. A simple spiral approximates of a portion of an archimedean spiral. A ''general spirolateral'' allows positive and negative angles. A ''spirolateral'' which completes in one turn is a simple polygon, while requiring more than 1 turn is a star polygon and must be self-crossing. A simple spirolateral can be an equangular simple polygon with ''p'' vertices, or an equiangular star polygon with ''p'' vertices and ''q'' turns. Spirolaterals were invented and named by Frank C. Odds as a teenager in 1962, as ''square spirolaterals'' with 90° angles, drawn on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polygon
In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon's '' vertices'' or ''corners''. An ''n''-gon is a polygon with ''n'' sides; for example, a triangle is a 3-gon. A simple polygon is one which does not intersect itself. More precisely, the only allowed intersections among the line segments that make up the polygon are the shared endpoints of consecutive segments in the polygonal chain. A simple polygon is the boundary of a region of the plane that is called a ''solid polygon''. The interior of a solid polygon is its ''body'', also known as a ''polygonal region'' or ''polygonal area''. In contexts where one is concerned only with simple and solid polygons, a ''polygon'' may refer only to a simple polygon or to a solid polygon. A polygonal chain may cross over itself, creating star polyg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Octagon Golygon
In geometry, an octagon () is an eight-sided polygon or 8-gon. A '' regular octagon'' has Schläfli symbol and can also be constructed as a quasiregular truncated square, t, which alternates two types of edges. A truncated octagon, t is a hexadecagon, . A 3D analog of the octagon can be the rhombicuboctahedron with the triangular faces on it like the replaced edges, if one considers the octagon to be a truncated square. Properties The sum of all the internal angles of any octagon is 1080°. As with all polygons, the external angles total 360°. If squares are constructed all internally or all externally on the sides of an octagon, then the midpoints of the segments connecting the centers of opposite squares form a quadrilateral that is both equidiagonal and orthodiagonal (that is, whose diagonals are equal in length and at right angles to each other).Dao Thanh Oai (2015), "Equilateral triangles and Kiepert perspectors in complex numbers", ''Forum Geometricorum'' 15, 105- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simply-connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed into any other such path while preserving the two endpoints in question. Intuitively, this corresponds to a space that has no disjoint parts and no holes that go completely through it, because two paths going around different sides of such a hole cannot be continuously transformed into each other. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial. Definition and equivalent formulations A topological space X is called if it is path-connected and any loop in X defined by f : S^1 \to X can be contracted to a point: there exists a continuous map F : D^2 \to X such that F restricted to S^1 is f. Here, S^1 and D^2 denotes the unit circ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics Magazine
''Mathematics Magazine'' is a refereed bimonthly publication of the Mathematical Association of America. Its intended audience is teachers of collegiate mathematics, especially at the junior/senior level, and their students. It is explicitly a journal of mathematics rather than pedagogy. Rather than articles in the terse "theorem-proof" style of research journals, it seeks articles which provide a context for the mathematics they deliver, with examples, applications, illustrations, and historical background. Paid circulation in 2008 was 9,500 and total circulation was 10,000. ''Mathematics Magazine'' is a continuation of ''Mathematics News Letter'' (1926–1934) and ''National Mathematics Magazine'' (1934–1945). Doris Schattschneider became the first female editor of ''Mathematics Magazine'' in 1981. .. The MAA gives the Carl B. Allendoerfer Awards annually "for articles of expository excellence" published in ''Mathematics Magazine''. See also *''American Mathematical Mon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Special Case
In logic, especially as applied in mathematics, concept is a special case or specialization of concept precisely if every instance of is also an instance of but not vice versa, or equivalently, if is a generalization of .Brown, James Robert. Philosophy of Mathematics: An Introduction to a World of Proofs and Pictures'. United Kingdom, Taylor & Francis, 2005. 27. A limiting case is a type of special case which is arrived at by taking some aspect of the concept to the extreme of what is permitted in the general case. If is true, one can immediately deduce that is true as well, and if is false, can also be immediately deduced to be false. A degenerate case is a special case which is in some way qualitatively different from almost all of the cases allowed. Examples Special case examples include the following: * All squares are rectangles (but not all rectangles are squares); therefore the square is a special case of the rectangle. It is also a special case of the rhombus ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Mathematical Intelligencer
''The Mathematical Intelligencer'' is a mathematical journal published by Springer Science+Business Media that aims at a conversational and scholarly tone, rather than the technical and specialist tone more common among academic journals. Volumes are released quarterly with a subset of open access articles. Some articles have been cross-published in the ''Scientific American''. Karen Parshall and Sergei Tabachnikov are currently the co-editors-in-chief. History The journal was started informally in 1971 by Walter Kaufmann-Buehler and Alice and Klaus Peters. "Intelligencer" was chosen by Kaufmann-Buehler as a word that would appear slightly old-fashioned. An exploration of mathematically themed stamps, written by Robin Wilson, became one of its earliest columns. Prior to 1977, articles of the ''Intelligencer'' were not contained in regular volumes and were sent out sporadically to those on a mailing list. To gauge interest, the inaugural mailing included twelve thousand people ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conway Criterion
In the mathematical theory of tessellations, the Conway criterion, named for the English mathematician John Horton Conway, is a Necessity and sufficiency, sufficient rule for when a prototile will tile the plane. It consists of the following requirements:Will It Tile? Try the Conway Criterion!' by Doris Schattschneider Mathematics Magazine Vol. 53, No. 4 (Sep, 1980), pp. 224-233 The tile must be a Topological disc#Topological balls, closed topological disk with six consecutive points A, B, C, D, E, and F on the boundary such that: * the boundary part from A to B is Congruence (geometry), congruent to the boundary part from E to D by a Translation (geometry), translation T where T(A) = E and T(B) = D. * each of the boundary parts BC, CD, EF, and FA is Centrosymmetry, centrosymmetric—that is, each one is congruent to itself when rotated by 180-degrees around its midpoint. * some of the six points may coincide but at least three of them must be distinct. Any prototile satisfying ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generating Function
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series. Every sequence in principle has a generating function of each type (except that Lambert and Dirichlet series require indices to start at 1 rather than 0), but the ease with which they can be handled may differ considerably. The particular generating function, if any, that is most useful in a given context will depend upon the nature of the sequence and the details of the problem being addressed. Generating functions are sometimes called generating series, in that a series of terms can be said to be the generator of its sequence ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tessellation
A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern. Some special kinds include '' regular tilings'' with regular polygonal tiles all of the same shape, and '' semiregular tilings'' with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that lacks a repeating pattern is called "non-periodic". An '' aperiodic tiling'' uses a small set of tile shapes that cannot form a repeating pattern (an aperiodic set of prototiles). A '' tessellation of space'', also known as a space filling or honeycomb, can be defined in the geometry of higher dimensions. A real physical tessellation is a tiling made of materials such as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |