Geodesic Fold
   HOME



picture info

Geodesic Fold
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line". The noun ''geodesic'' and the adjective ''geodetic'' come from ''geodesy'', the science of measuring the size and shape of Earth, though many of the underlying principles can be applied to any ellipsoidal geometry. In the original sense, a geodesic was the shortest route between two points on the Earth's surface. For a spherical Earth, it is a segment of a great circle (see also great-circle distance). The term has since been generalized to more abstract mathematical spaces; for example, in graph theory, one might consider a geodesic between two vertices/nodes of a graph. In a Riemannian manifold or submanifold, geodesics are characterised by the property of having vanish ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Klein Quartic With Closed Geodesics
Klein may refer to: People *Klein (surname) *Klein (musician) Places *Klein (crater), a lunar feature *Klein, Montana, United States *Klein, Texas, United States *Klein (Ohm), a river of Hesse, Germany, tributary of the Ohm *Klein River, a river in the Western Cape province of South Africa Business *Klein Bikes, a bicycle manufacturer *Klein Tools, a manufacturer *S. Klein, a department store *Klein Modellbahn, an Austrian model railway manufacturer Arts *Klein + M.B.O., an Italian musical group *Klein Award, for comic art *Yves Klein, French artist Mathematics *Klein bottle, an unusual shape in topology *Klein geometry *Klein configuration, in geometry *Klein cubic (other) *Klein graphs, in graph theory *Klein model, or Beltrami–Klein model, a model of hyperbolic geometry *Klein polyhedron, a generalization of continued fractions to higher dimensions, in the geometry of numbers *Klein surface, a dianalytic manifold of complex dimension 1 Other uses * Kleins, Linema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ellipsoidal Geodesic
The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an '' oblate ellipsoid'', a slightly flattened sphere. A ''geodesic'' is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry . If the Earth is treated as a sphere, the geodesics are great circles (all of which are closed) and the problems reduce to ones in spherical trigonometry. However, showed that the effect of the rotation of the Earth results in its resembling a slightly oblate ellipsoid: in this case, the equator and the meridians are the only simple closed geodesics. Furthermore, the shortest path between two points on the equator does not necessarily run along the equator. Finally, if the ellipsoid is further perturbed t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE