Foundations Of Statistics
The Foundations of Statistics are the mathematical and philosophical bases for statistical methods. These bases are the theoretical frameworks that ground and justify methods of statistical inference, estimation, hypothesis testing, uncertainty quantification, and the interpretation of statistical conclusions. Further, a foundation can be used to explain statistical paradoxes, provide descriptions of statistical laws, and guide the application of statistics to real-world problems. Different statistical foundations may provide different, contrasting perspectives on the analysis and interpretation of data, and some of these contrasts have been subject to centuries of debate. Examples include the Bayesian inference versus frequentist inference; the distinction between Fisher's ''significance testing'' and the Neyman- Pearson ''hypothesis testing''; and whether the likelihood principle holds. Certain frameworks may be preferred for specific applications, such as the use of B ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Bayesian Statistics
Bayesian statistics ( or ) is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a ''degree of belief'' in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation, which views probability as the limit of the relative frequency of an event after many trials. More concretely, analysis in Bayesian methods codifies prior knowledge in the form of a prior distribution. Bayesian statistical methods use Bayes' theorem to compute and update probabilities after obtaining new data. Bayes' theorem describes the conditional probability of an event based on data as well as prior information or beliefs about the event or conditions related to the event. For example, in Bayesian inference, Bayes' theorem can ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Experiment
An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a particular factor is manipulated. Experiments vary greatly in goal and scale but always rely on repeatable procedure and logical analysis of the results. There also exist natural experimental studies. A child may carry out basic experiments to understand how things fall to the ground, while teams of scientists may take years of systematic investigation to advance their understanding of a phenomenon. Experiments and other types of hands-on activities are very important to student learning in the science classroom. Experiments can raise test scores and help a student become more engaged and interested in the material they are learning, especially when used over time. Experiments can vary from personal and informal natural comparisons ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Null Hypothesis
The null hypothesis (often denoted ''H''0) is the claim in scientific research that the effect being studied does not exist. The null hypothesis can also be described as the hypothesis in which no relationship exists between two sets of data or variables being analyzed. If the null hypothesis is true, any experimentally observed effect is due to chance alone, hence the term "null". In contrast with the null hypothesis, an alternative hypothesis (often denoted ''H''A or ''H''1) is developed, which claims that a relationship does exist between two variables. Basic definitions The null hypothesis and the ''alternative hypothesis'' are types of conjectures used in statistical tests to make statistical inferences, which are formal methods of reaching conclusions and separating scientific claims from statistical noise. The statement being tested in a test of statistical significance is called the null hypothesis. The test of significance is designed to assess the strength of the e ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th ed., (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', vol. 1, 3rd ed., (1968), Wiley, . This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These concepts have been given an axiomatic mathematical formaliza ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Statistic
A statistic (singular) or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose. Statistical purposes include estimating a population parameter, describing a sample, or evaluating a hypothesis. The average (or mean) of sample values is a statistic. The term statistic is used both for the function (e.g., a calculation method of the average) and for the value of the function on a given sample (e.g., the result of the average calculation). When a statistic is being used for a specific purpose, it may be referred to by a name indicating its purpose. When a statistic is used for estimating a population parameter, the statistic is called an '' estimator''. A population parameter is any characteristic of a population under study, but when it is not feasible to directly measure the value of a population parameter, statistical methods are used to infer the likely value of the parameter on the basis of a statistic computed from a s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Deductive Reasoning
Deductive reasoning is the process of drawing valid inferences. An inference is valid if its conclusion follows logically from its premises, meaning that it is impossible for the premises to be true and the conclusion to be false. For example, the inference from the premises "all men are mortal" and " Socrates is a man" to the conclusion "Socrates is mortal" is deductively valid. An argument is ''sound'' if it is valid ''and'' all its premises are true. One approach defines deduction in terms of the intentions of the author: they have to intend for the premises to offer deductive support to the conclusion. With the help of this modification, it is possible to distinguish valid from invalid deductive reasoning: it is invalid if the author's belief about the deductive support is false, but even invalid deductive reasoning is a form of deductive reasoning. Deductive logic studies under what conditions an argument is valid. According to the semantic approach, an argument is valid ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
The Design Of Experiments
''The Design of Experiments'' is a 1935 book by the English statistician Ronald Fisher about the design of experiments and is considered a foundational work in experimental design. Among other contributions, the book introduced the concept of the null hypothesis in the context of the lady tasting tea experiment.OED, "null hypothesis," first usage: 1935 R. A. Fisher, ''The Design of Experiments'' ii. 19, "We may speak of this hypothesis as the 'null hypothesis'...the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation." A chapter is devoted to the Latin square. Chapters # Introduction # The principles of experimentation, illustrated by a psycho-physical experiment # A historical experiment on growth rate # An agricultural experiment in randomized blocks # The Latin square # The factorial design in experimentation # Confounding # Special cases of partial confounding # The increase of precision by concomitant measurements. Sta ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Statistical Methods For Research Workers
''Statistical Methods for Research Workers'' is a classic book on statistics, written by the statistician R. A. Fisher. It is considered by some to be one of the 20th century's most influential books on statistical methods, together with his '' The Design of Experiments'' (1935). It was originally published in 1925, by Oliver & Boyd (Edinburgh); the final and posthumous 14th edition was published in 1970. The impulse to write a book on the statistical methodology he had developed came not from Fisher himself but from D. Ward Cutler, one of the two editors of a series of "Biological Monographs and Manuals" being published by Oliver and Boyd. Reviews According to Denis Conniffe: Ronald A. Fisher was "interested in application and in the popularization of statistical methods and his early book ''Statistical Methods for Research Workers'', published in 1925, went through many editions and motivated and influenced the practical use of statistics in many fields of study. His ''Design ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Inductive Reasoning
Inductive reasoning refers to a variety of method of reasoning, methods of reasoning in which the conclusion of an argument is supported not with deductive certainty, but with some degree of probability. Unlike Deductive reasoning, ''deductive'' reasoning (such as mathematical induction), where the conclusion is ''certain'', given the premises are correct, inductive reasoning produces conclusions that are at best ''probable'', given the evidence provided. Types The types of inductive reasoning include generalization, prediction, statistical syllogism, argument from analogy, and causal inference. There are also differences in how their results are regarded. Inductive generalization A generalization (more accurately, an ''inductive generalization'') proceeds from premises about a Sample (statistics), sample to a conclusion about the statistical population, population. The observation obtained from this sample is projected onto the broader population. : The proportion Q of the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Causality (book)
''Causality: Models, Reasoning, and Inference'' (2000; updated 2009) is a book by Judea Pearl. It is an exposition and analysis of causality. It is considered to have been instrumental in laying the foundations of the modern debate on causal inference in several fields including statistics, computer science and epidemiology. In this book, Pearl espouses the Structural Causal Model (SCM) that uses structural equation modeling. This model is a competing viewpoint to the Rubin causal model. Some of the material from the book was reintroduced in the more general-audience targeting The Book of Why. Reviews The book earnt Pearl the 2001 Lakatos Award in Philosophy of Science. See also * Causality *Causal inference *Structural equation modeling Structural equation modeling (SEM) is a diverse set of methods used by scientists for both observational and experimental research. SEM is used mostly in the social and behavioral science fields, but it is also used in epidemiology, bu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Causality
Causality is an influence by which one Event (philosophy), event, process, state, or Object (philosophy), object (''a'' ''cause'') contributes to the production of another event, process, state, or object (an ''effect'') where the cause is at least partly responsible for the effect, and the effect is at least partly dependent on the cause. The cause of something may also be described as the reason for the event or process. In general, a process can have multiple causes,Compare: which are also said to be ''causal factors'' for it, and all lie in its past. An effect can in turn be a cause of, or causal factor for, many other effects, which all lie in its future. Some writers have held that causality is metaphysics , metaphysically prior to notions of time and space. Causality is an abstraction that indicates how the world progresses. As such it is a basic concept; it is more apt to be an explanation of other concepts of progression than something to be explained by other more fun ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |