Filter (mathematics)
In mathematics, a filter or order filter is a special subset of a partially ordered set (poset), describing "large" or "eventual" elements. Filters appear in order and lattice theory, but also topology, whence they originate. The notion dual to a filter is an order ideal. Special cases of filters include ultrafilters, which are filters that cannot be enlarged, and describe nonconstructive techniques in mathematical logic. Filters on sets were introduced by Henri Cartan in 1937. Nicolas Bourbaki, in their book '' Topologie Générale'', popularized filters as an alternative to E. H. Moore and Herman L. Smith's 1922 notion of a net; order filters generalize this notion from the specific case of a power set under inclusion to arbitrary partially ordered sets. Nevertheless, the theory of power-set filters retains interest in its own right, in part for substantial applications in topology. Motivation Fix a partially ordered set (poset) . Intuitively, a filter& ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Filter Vs Ultrafilter
Filtration is a physical process that separates solid matter and fluid from a mixture. Filter, filtering, filters or filtration may also refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Filter (software), a computer program to process a data stream * Filter (video), a software component that performs some operation on a multimedia stream * Information filtering system ** Email filtering, the processing of email to organize it according to specified criteria * Content-control software also known as an Internet filter * Wordfilter, a script typically used on Internet forums or chat rooms * Berkeley Packet Filter, filter expression used in the qualification of network data * DSL filter, a low-pass filter installed between analog devices and a telephone line * Helicon Filter, a raster graphics editor * Filter (large eddy simulation), a mathematical operation intended to remove a range of small scales from the solution to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as well as the reason of the notation denoting the power set are demonstrated in the below. : An indicator function or a characteristic function of a subset of a set with the cardinality is a function from to the two-element set , denoted as , ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Upper Set
In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger than ''s'' (that is, if s < x), then ''x'' is in ''S''. In other words, this means that any ''x'' element of ''X'' that is to some element of ''S'' is necessarily also an element of ''S''. The term lower set (also called a downward closed set, down set, decreasing set, initial segment, or semi-ideal) is defined similarly as being a subset ''S'' of ''X'' with the property that any element ''x'' of ''X'' that is to some element of ''S'' is necessarily also an element of ''S''. Definition Let be a preordered set. An in (also called an , an ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Directed Set
In mathematics, a directed set (or a directed preorder or a filtered set) is a preordered set in which every finite subset has an upper bound. In other words, it is a non-empty preordered set A such that for any a and b in A there exists c in A with a \leq c and b \leq c. A directed set's preorder is called a direction. The notion defined above is sometimes called an . A is defined symmetrically, meaning that every finite subset has a lower bound. Some authors (and this article) assume that a directed set is directed upward, unless otherwise stated. Other authors call a set directed if and only if it is directed both upward and downward. Directed sets are a generalization of nonempty totally ordered sets. That is, all totally ordered sets are directed sets (contrast Partially ordered sets, ordered sets, which need not be directed). Join-semilattices (which are partially ordered sets) are directed sets as well, but not conversely. Likewise, Lattice (order), lattices are directed s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empty Set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called ''non-empty''. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø () in the Danish orthography, Danish and Norwegian orthography, Norwegian a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compactness
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One such ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empty Set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called ''non-empty''. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø () in the Danish orthography, Danish and Norwegian orthography, Norwegian a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Filter (mathematics)
In mathematics, a filter or order filter is a special subset of a partially ordered set (poset), describing "large" or "eventual" elements. Filters appear in order and lattice theory, but also topology, whence they originate. The notion dual to a filter is an order ideal. Special cases of filters include ultrafilters, which are filters that cannot be enlarged, and describe nonconstructive techniques in mathematical logic. Filters on sets were introduced by Henri Cartan in 1937. Nicolas Bourbaki, in their book '' Topologie Générale'', popularized filters as an alternative to E. H. Moore and Herman L. Smith's 1922 notion of a net; order filters generalize this notion from the specific case of a power set under inclusion to arbitrary partially ordered sets. Nevertheless, the theory of power-set filters retains interest in its own right, in part for substantial applications in topology. Motivation Fix a partially ordered set (poset) . Intuitively, a filter& ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interior (topology)
In mathematics, specifically in topology, the interior of a subset of a topological space is the union of all subsets of that are open in . A point that is in the interior of is an interior point of . The interior of is the complement of the closure of the complement of . In this sense interior and closure are dual notions. The exterior of a set is the complement of the closure of ; it consists of the points that are in neither the set nor its boundary. The interior, boundary, and exterior of a subset together partition the whole space into three blocks (or fewer when one or more of these is empty). The interior and exterior of a closed curve are a slightly different concept; see the Jordan curve theorem. Definitions Interior point If S is a subset of a Euclidean space, then x is an interior point of S if there exists an open ball centered at x which is completely contained in S. (This is illustrated in the introductory section to this article.) This definitio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Line
A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced marks in either direction representing integers, imagined to extend infinitely. The association between numbers and point (geometry), points on the line links elementary arithmetic, arithmetical operations on numbers to geometry, geometric relations between points, and provides a conceptual framework for learning mathematics. In elementary mathematics, the number line is initially used to teach addition and subtraction of integers, especially involving negative numbers. As students progress, more kinds of numbers can be placed on the line, including fractions, decimal fractions, square roots, and transcendental numbers such as the pi, circle constant : Every point of the number line corresponds to a unique real number, and every real number to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Comparability
In mathematics, two elements ''x'' and ''y'' of a set ''P'' are said to be comparable with respect to a binary relation ≤ if at least one of ''x'' ≤ ''y'' or ''y'' ≤ ''x'' is true. They are called incomparable if they are not comparable. Rigorous definition A binary relation on a set P is by definition any subset R of P \times P. Given x, y \in P, x R y is written if and only if (x, y) \in R, in which case x is said to be to y by R. An element x \in P is said to be , or (), to an element y \in P if x R y or y R x. Often, a symbol indicating comparison, such as \,,\, \geq, and many others) is used instead of R, in which case x < y is written in place of which is why the term "comparable" is used. Comparability with respect to induces a canonical binary relation on ; specifically, the induced by is defined to be the set of all pairs such that i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |