HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, specifically in
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, the interior of a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
is the union of all subsets of that are open in . A point that is in the interior of is an interior point of . The interior of is the complement of the closure of the complement of . In this sense interior and closure are dual notions. The exterior of a set is the complement of the closure of ; it consists of the points that are in neither the set nor its boundary. The interior, boundary, and exterior of a subset together partition the whole space into three blocks (or fewer when one or more of these is empty). The interior and exterior of a
closed curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
are a slightly different concept; see the Jordan curve theorem.


Definitions


Interior point

If S is a subset of a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, then x is an interior point of S if there exists an open ball centered at x which is completely contained in S. (This is illustrated in the introductory section to this article.) This definition generalizes to any subset S of a
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
X with metric d: x is an interior point of S if there exists a real number r > 0, such that y is in S whenever the distance d(x, y) < r. This definition generalizes to
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s by replacing "open ball" with "
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
". If S is a subset of a topological space X then x is an of S in X if x is contained in an open subset of X that is completely contained in S. (Equivalently, x is an interior point of S if S is a
neighbourhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
of x.)


Interior of a set

The interior of a subset S of a topological space X, denoted by \operatorname_X S or \operatorname S or S^\circ, can be defined in any of the following equivalent ways: # \operatorname S is the largest open subset of X contained in S. # \operatorname S is the union of all open sets of X contained in S. # \operatorname S is the set of all interior points of S. If the space X is understood from context then the shorter notation \operatorname S is usually preferred to \operatorname_X S.


Examples

*In any space, the interior of the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
is the empty set. *In any space X, if S \subseteq X, then \operatorname S \subseteq S. *If X is the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
\Reals (with the standard topology), then \operatorname (
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
= (0, 1) whereas the interior of the set \Q of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s is empty: \operatorname \Q = \varnothing. *If X is the
complex plane In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
\Complex, then \operatorname (\) = \. *In any
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, the interior of any
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
is the empty set. On the set of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, one can put other topologies rather than the standard one: *If X is the real numbers \Reals with the
lower limit topology In mathematics, the lower limit topology or right half-open interval topology is a topology defined on \mathbb, the set of real numbers; it is different from the standard topology on \mathbb (generated by the open intervals) and has a number of in ...
, then \operatorname (
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
= every set is open, then \operatorname (
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
= [0, 1]. *If one considers on \Reals the topology in which the only open sets are the empty set and \Reals itself, then \operatorname (
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
is the empty set. These examples show that the interior of a set depends upon the topology of the underlying space. The last two examples are special cases of the following. *In any
discrete space In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
, since every set is open, every set is equal to its interior. *In any
indiscrete space In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the conseque ...
X, since the only open sets are the empty set and X itself, \operatorname X = X and for every proper subset S of X, \operatorname S is the empty set.


Properties

Let X be a topological space and let S and T be subsets of X. * \operatorname S is open in X. * If T is open in X then T \subseteq S if and only if T \subseteq \operatorname S. * \operatorname S is an open subset of S when S is given the
subspace topology In topology and related areas of mathematics, a subspace of a topological space (''X'', ''𝜏'') is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''𝜏'' called the subspace topology (or the relative topology ...
. * S is an open subset of X
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
\operatorname S = S. * : \operatorname S \subseteq S. * : \operatorname (\operatorname S) = \operatorname S. * /: \operatorname (S \cap T) = (\operatorname S) \cap (\operatorname T). ** However, the interior operator does not distribute over unions since only \operatorname (S \cup T) ~\supseteq~ (\operatorname S) \cup (\operatorname T) is guaranteed in general and equality might not hold. For example, if X = \Reals, S = (-\infty, 0], and T = (0, \infty) then (\operatorname S) \cup (\operatorname T) = (-\infty, 0) \cup (0, \infty) = \Reals \setminus \ is a proper subset of \operatorname (S \cup T) = \operatorname \Reals = \Reals. * /: If S \subseteq T then \operatorname S \subseteq \operatorname T. Other properties include: * If S is closed in X and \operatorname T = \varnothing then \operatorname (S \cup T) = \operatorname S. Relationship with closure The above statements will remain true if all instances of the symbols/words :"interior", "int", "open", "subset", and "largest" are respectively replaced by :" closure", "cl", "closed", "superset", and "smallest" and the following symbols are swapped: # "\subseteq" swapped with "\supseteq" # "\cup" swapped with "\cap" For more details on this matter, see Interior (topology)#Interior operator, interior operator below or the article
Kuratowski closure axioms In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a Set (mathematics), set. They are equivalent to the more commonly used open set definition. The ...
.


Interior operator

The interior operator \operatorname_X is dual to the closure operator, which is denoted by \operatorname_X or by an overline , in the sense that \operatorname_X S = X \setminus \overline and also \overline = X \setminus \operatorname_X (X \setminus S), where X is the
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
containing S, and the backslash \,\setminus\, denotes set-theoretic difference. Therefore, the abstract theory of closure operators and the
Kuratowski closure axioms In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a Set (mathematics), set. They are equivalent to the more commonly used open set definition. The ...
can be readily translated into the language of interior operators, by replacing sets with their complements in X. In general, the interior operator does not commute with unions. However, in a
complete metric space In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the bou ...
the following result does hold: The result above implies that every complete metric space is a Baire space.


Exterior of a set

The exterior of a subset S of a topological space X, denoted by \operatorname_X S or simply \operatorname S, is the largest open set disjoint from S, namely, it is the union of all open sets in X that are disjoint from S. The exterior is the interior of the complement, which is the same as the complement of the closure; in formulas, \operatorname S = \operatorname(X \setminus S) = X \setminus \overline. Similarly, the interior is the exterior of the complement: \operatorname S = \operatorname(X \setminus S). The interior, boundary, and exterior of a set S together partition the whole space into three blocks (or fewer when one or more of these is empty): X = \operatorname S \cup \partial S \cup \operatorname S, where \partial S denotes the boundary of S. The interior and exterior are always open, while the boundary is closed. Some of the properties of the exterior operator are unlike those of the interior operator: * The exterior operator reverses inclusions; if S \subseteq T, then \operatorname T \subseteq \operatorname S. * The exterior operator is not idempotent. It does have the property that \operatorname S \subseteq \operatorname\left(\operatorname S\right).


Interior-disjoint shapes

Two shapes a and b are called ''interior-disjoint'' if the intersection of their interiors is empty. Interior-disjoint shapes may or may not intersect in their boundary.


See also

* * * * * *


References


Bibliography

* * * * * * * * * *


External links

* {{Topology, expanded Closure operators General topology