HOME





Diagonal Intersection
Diagonal intersection is a term used in mathematics, especially in set theory. If \displaystyle\delta is an ordinal number and \displaystyle\langle X_\alpha \mid \alpha<\delta\rangle is a of subsets of \displaystyle\delta, then the ''diagonal intersection'', denoted by :\displaystyle\Delta_ X_\alpha, is defined to be :\displaystyle\. That is, an ordinal \displaystyle\beta is in the diagonal intersection \displaystyle\Delta_ X_\alpha if and only if it is contained in the first \displaystyle\beta members of the sequence. This is the same as :\displaystyle\bigcap_ ( , \alpha\cup X_\alpha ),
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter "M" first and "Y" last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be '' finite'', as in these examples, or '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Algebra
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denoted by 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as Logical conjunction, conjunction (''and'') denoted as , disjunction (''or'') denoted as , and negation (''not'') denoted as . Elementary algebra, on the other hand, uses arithmetic operators such as addition, multiplication, subtraction, and division. Boolean algebra is therefore a formal way of describing logical operations in the same way that elementary algebra describes numerical operations. Boolean algebra was introduced by George Boole in his first book ''The Mathematical Analysis of Logic'' (1847), and set forth more fully in his ''An Investigation of the Laws of Thought'' (1854). According to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Club Filter
In mathematics, particularly in set theory, if \kappa is a regular uncountable cardinal then \operatorname(\kappa), the filter of all sets containing a club subset of \kappa, is a \kappa-complete filter closed under diagonal intersection called the club filter. To see that this is a filter, note that \kappa \in \operatorname(\kappa) since it is thus both closed and unbounded (see club set). If x\in\operatorname(\kappa) then any subset of \kappa containing x is also in \operatorname(\kappa), since x, and therefore anything containing it, contains a club set. It is a \kappa-complete filter because the intersection of fewer than \kappa club sets is a club set. To see this, suppose \langle C_i\rangle_ is a sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ... of club sets where \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infimum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, and if ''b'' is a lower bound of S, then ''b'' is less than or equal to the infimum of S. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; : suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. If the supremum of S exists, it is unique, and if ''b'' is an upper bound of S, then the supremum of S is less than or equal to ''b''. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in anal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Club Set
In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal that is closed under the order topology, and is unbounded (see below) relative to the limit ordinal. The name ''club'' is a contraction of "closed and unbounded". Formal definition Formally, if \kappa is a limit ordinal, then a set C\subseteq\kappa is ''closed'' in \kappa if and only if for every \alpha < \kappa, if \sup(C \cap \alpha) = \alpha \neq 0, then \alpha \in C. Thus, if the limit of some sequence from C is less than \kappa, then the limit is also in C. If \kappa is a limit ordinal and C \subseteq \kappa then C is unbounded in \kappa if for any \alpha < \kappa, there is some \beta \in C such that \alpha < \ ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fodor's Lemma
In mathematics, particularly in set theory, Fodor's lemma states the following: If \kappa is a regular, uncountable cardinal, S is a stationary subset of \kappa, and f:S\rightarrow\kappa is regressive (that is, f(\alpha)<\alpha for any \alpha\in S, \alpha\neq 0) then there is some \gamma and some stationary S_0\subseteq S such that f(\alpha)=\gamma for any \alpha\in S_0. In modern parlance, the nonstationary ideal is ''normal''. The lemma was first proved by the Hungarian set theorist, Géza Fodor in 1956. It is sometimes also called "The Pressing Down Lemma".


Proof

We can assume that 0\notin S (by removing 0, if necessary). If Fodor's lemma is false, for every \alpha<\kappa there is some



Thomas Jech
Thomas J. Jech (, ; born 29 January 1944 in Prague) is a mathematician specializing in set theory who was at Penn State for more than 25 years. Life He was educated at Charles University (his advisor was Petr Vopěnka) and from 2000 is at thInstitute of Mathematicsof the Academy of Sciences of the Czech Republic. Work Jech's research also includes mathematical logic, algebra, analysis, topology, and measure theory. Jech gave the first published proof of the consistency of the existence of a Suslin line. With Karel Prikry, he introduced the notion of precipitous ideal. He gave several models where the axiom of choice failed, for example one with ω1 measurable. The concept of a Jech–Kunen tree is named after him and Kenneth Kunen Herbert Kenneth Kunen (August 2, 1943August 14, 2020) was a professor of mathematics at the University of Wisconsin–Madison who worked in set theory and its applications to various areas of mathematics, such as set-theoretic topology a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Akihiro Kanamori
is a Japanese-born American mathematician. He specializes in set theory and is the author of the monograph on large cardinals, '' The Higher Infinite''. He has written several essays on the history of mathematics, especially set theory. Kanamori graduated from California Institute of Technology and earned a Ph.D. from the University of Cambridge ( King's College), and is a professor of mathematics at Boston University Boston University (BU) is a Private university, private research university in Boston, Massachusetts, United States. BU was founded in 1839 by a group of Boston Methodism, Methodists with its original campus in Newbury (town), Vermont, Newbur .... With Matthew Foreman, Kanamori is the editor of the ''Handbook of Set Theory'' (2010). Selected publications * A. Kanamori, M. MagidorThe evolution of large cardinal axioms in set theory in: ''Higher set theory'' (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977), Lecture Notes in Mathematics, 669, Spring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Higher Infinite
''The Higher Infinite: Large Cardinals in Set Theory from their Beginnings'' is a monograph in set theory by Akihiro Kanamori, concerning the history and theory of large cardinals, infinite sets characterized by such strong properties that their existence cannot be proven in Zermelo–Fraenkel set theory (ZFC). This book was published in 1994 by Springer-Verlag in their series Perspectives in Mathematical Logic, with a second edition in 2003 in their Springer Monographs in Mathematics series, and a paperback reprint of the second edition in 2009 (). Topics Not counting introductory material and appendices, there are six chapters in ''The Higher Infinite'', arranged roughly in chronological order by the history of the development of the subject. The author writes that he chose this ordering "both because it provides the most coherent exposition of the mathematics and because it holds the key to any epistemological concerns". In the first chapter, "Beginnings", the material include ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]