HOME





Decarboxylase
Carboxy-lyases, also known as decarboxylases, are carbon–carbon lyases that add or remove a carboxyl group from organic compounds. These enzymes catalyze the decarboxylation of amino acids and alpha-keto acids. Classification and nomenclature Carboxy-lyases are categorized under EC number 4.1.1. Usually, they are named after the substrate whose decarboxylation they catalyze, for example pyruvate decarboxylase catalyzes the decarboxylation of pyruvate. Examples * Aromatic-L-amino-acid decarboxylase * Glutamate decarboxylase * Histidine decarboxylase * Ornithine decarboxylase * Phosphoenolpyruvate carboxylase * Pyruvate decarboxylase * RuBisCO – the only carboxylase that leads to a net fixation of carbon dioxide * Uridine monophosphate synthetase * Uroporphyrinogen III decarboxylase * enoyl-CoA carboxylases/reductases (ECRs) See also * Enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carbon-carbon Lyases
This list contains a list of EC numbers for the fourth group, EC 4, lyases, placed in numerical order as determined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology. All official information is tabulated at the website of the committee. The database is developed and maintained by Andrew McDonald. EC 4.1: Carbon-Carbon Lyases EC 4.1.1: Carboxy-lyases * : pyruvate decarboxylase * : oxalate decarboxylase * EC 4.1.1.3: Now recognized to be two enzymes xaloacetate decarboxylase (Na+ extruding)and (oxaloacetate decarboxylase). * : acetoacetate decarboxylase * : acetolactate decarboxylase * : ''cis''-aconitate decarboxylase * : benzoylformate decarboxylase * : oxalyl-CoA decarboxylase * : malonyl-CoA decarboxylase * EC 4.1.1.10: Now included with , aspartate 4-decarboxylase * : aspartate 1-decarboxylase * : aspartate 4-decarboxylase * EC 4.1.1.13: deleted * : valine decarboxylase * : glutamate decarboxylase * : hydroxyg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glutamate Decarboxylase
Glutamate decarboxylase or glutamic acid decarboxylase (GAD) is an enzyme that catalyzes the Decarboxylation#Decarboxylation of amino acids, decarboxylation of glutamate to gamma-aminobutyric acid (GABA) and carbon dioxide (). GAD uses pyridoxal-phosphate (PLP) as a cofactor (biochemistry), cofactor. The reaction proceeds as follows: : In mammals, GAD exists in two isoforms with molecular weights of 67 and 65 Dalton (unit), kDa (GAD67 and GAD65), which are encoded by two different genes on different chromosomes (''GAD1'' and ''GAD2'' genes, Chromosome 2, chromosomes 2 and Chromosome 10, 10 in humans, respectively). GAD67 and GAD65 are expressed in the brain where GABA is used as a neurotransmitter, and they are also expressed in the insulin-producing beta cell, β-cells of the pancreas, in varying ratios depending upon the species. Together, these two enzymes maintain the major physiological supply of GABA in mammals, though it may also be synthesized from putrescine in the ent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Histidine Decarboxylase
The enzyme histidine decarboxylase (, HDC) is transcribed on chromosome 15, region q21.1-21.2, and Catalysis, catalyzes the decarboxylation of histidine to form histamine. In mammals, histamine is an important biogenic amine with regulatory roles in neurotransmission, gastric acid secretion and immune response. Histidine decarboxylase is the sole member of the histamine synthesis Metabolic pathway, pathway, producing histamine in a one-step reaction. Histamine cannot be generated by any other known enzyme. HDC is therefore the primary source of histamine in most mammals and eukaryotes. The enzyme employs a Pyridoxal phosphate, pyridoxal 5'-phosphate (PLP) cofactor, in similarity to many amino acid decarboxylases. Eukaryotes, as well as gram-negative bacteria share a common HDC, while gram-positive bacteria employ an evolutionarily unrelated pyruvoyl-dependent HDC. In humans, histidine decarboxylase is encoded by the ''HDC'' gene. Structure Histidine decarboxylase is a Group II p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aromatic-L-amino-acid Decarboxylase
Aromatic L-amino acid decarboxylase (AADC or AAAD), also known as DOPA decarboxylase (DDC), tryptophan decarboxylase, and 5-hydroxytryptophan decarboxylase, is a lyase enzyme (), located in region 7p12.2-p12.1. Mechanism The enzyme uses pyridoxal phosphate (PLP), the active form of vitamin B6, as a cofactor. PLP is essential to the mechanism of decarboxylation in AADC. In the active enzyme, PLP is bound to lysine-303 of AADC as a Schiff base. Upon substrate binding, Lys-303 is displaced by the substrate's amine. This positions the carboxylate of the substrate within the active site such that decarboxylation is favored. Decarboxylation of the substrate produces a quinonoid intermediate, which is subsequently protonated to produce a Schiff base adduct of PLP and the decarboxylated product. Lys-303 can then regenerate the original Schiff base, releasing the product while retaining PLP. Probing this PLP-catalyzed decarboxylation, it has been discovered that there is a differenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ornithine Decarboxylase
The enzyme ornithine decarboxylase (, ODC) catalyzes the decarboxylation of ornithine (a product of the urea cycle) to form putrescine. This reaction is the committed step in polyamine synthesis. In humans, this protein has 461 amino acids and forms a homodimer. In humans, ornithine decarboxylase (ODC) is expressed by the gene ''ODC1''. The protein ODC is sometimes referred to as "ODC1" in research pertaining to humans and mice, but certain species such as ''Drosophila'' (''dODC2''), species of Solanaceae plant family (''ODC2''), and the lactic acid bacteria '' Paucilactobacillus wasatchensis'' (''odc2'') have been shown to have a second ODC gene. Reaction mechanism Lysine 69 on ornithine decarboxylase (ODC) binds the cofactor pyridoxal phosphate to form a Schiff base. Ornithine displaces the lysine to form a Schiff base attached to orthonine, which decarboxylates to form a quinoid intermediate. This intermediate rearranges to form a Schiff base attached to putrescine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Uroporphyrinogen III Decarboxylase
Uroporphyrinogen III decarboxylase (uroporphyrinogen decarboxylase, or UROD) is an enzyme () that in humans is encoded by the ''UROD'' gene. Function Uroporphyrinogen III decarboxylase is a homodimeric enzyme () that catalyzes the fifth step in heme biosynthesis, which corresponds to the elimination of carboxyl groups from the four acetate side chains of uroporphyrinogen III to yield coproporphyrinogen III: :uroporphyrinogen III \rightleftharpoons coproporphyrinogen III + 4 CO2 Clinical significance Mutations and deficiency in this enzyme are known to cause familial porphyria cutanea tarda and hepatoerythropoietic porphyria. At least 65 disease-causing mutations in this gene have been discovered. Mechanism At low substrate concentrations, the reaction is believed to follow an ordered route, with the sequential removal of CO2 from the D, A, B, and C rings, whereas at higher substrate/enzyme levels a random route seems to be operative. The enzyme functions as a dimer in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uridine Monophosphate Synthetase
The enzyme Uridine monophosphate synthase (, UMPS) (orotate phosphoribosyl transferase and orotidine-5'-decarboxylase) catalyses the formation of uridine monophosphate (UMP), an energy-carrying molecule in many important biosynthetic pathways. In humans, the gene that codes for this enzyme is located on the long arm of chromosome 3 (3q13). Structure and function This bifunctional enzyme has two main domains, an orotate phosphoribosyltransferase (OPRTase, ) subunit and an orotidine-5’-phosphate decarboxylase (ODCase, ) subunit. These two sites catalyze the last two steps of the de novo uridine monophosphate (UMP) biosynthetic pathway. After addition of ribose-P to orotate by OPRTase to form orotidine-5’-monophosphate (OMP), OMP is decarboxylated to form uridine monophosphate by ODCase. In microorganisms, these two domains are separate proteins, but, in multicellular eukaryotes, the two catalytic sites are expressed on a single protein, uridine monophosphate synthase. UMPS ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pyruvate Decarboxylase
Pyruvate decarboxylase is an enzyme () that catalyses the decarboxylation of pyruvic acid to acetaldehyde. It is also called 2-oxo-acid carboxylase, alpha-ketoacid carboxylase, and pyruvic decarboxylase. In anaerobic conditions, this enzyme participates in the fermentation process that occurs in yeast, especially of the genus ''Saccharomyces'', to produce ethanol by fermentation. It is also present in some species of fish (including goldfish and carp) where it permits the fish to perform ethanol fermentation (along with lactic acid fermentation) when oxygen is scarce. Pyruvate decarboxylase starts this process by converting pyruvate into acetaldehyde and carbon dioxide. Pyruvate decarboxylase depends on cofactors thiamine pyrophosphate (TPP) and magnesium. This enzyme should not be mistaken for the unrelated enzyme pyruvate dehydrogenase, an oxidoreductase (), that catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. Structure Pyruvate decarboxylase occurs a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carboxy-Lyases
Carboxy-lyases, also known as decarboxylases, are carbon–carbon lyases that add or remove a carboxyl group from organic compounds. These enzymes catalyze the decarboxylation of amino acids and alpha-keto acids. Classification and nomenclature Carboxy-lyases are categorized under EC number 4.1.1. Usually, they are named after the substrate whose decarboxylation they catalyze, for example pyruvate decarboxylase catalyzes the decarboxylation of pyruvate. Examples * Aromatic-L-amino-acid decarboxylase * Glutamate decarboxylase * Histidine decarboxylase * Ornithine decarboxylase * Phosphoenolpyruvate carboxylase * Pyruvate decarboxylase * RuBisCO – the only carboxylase that leads to a net fixation of carbon dioxide * Uridine monophosphate synthetase * Uroporphyrinogen III decarboxylase * enoyl-CoA carboxylases/reductases (ECRs) See also * Enzymes * Lyase In biochemistry, a lyase is an enzyme that catalyzes the breaking (an elimination reaction) of various chemical bonds by m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecules known as product (chemistry), products. Almost all metabolism, metabolic processes in the cell (biology), cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called ''enzymology'' and the field of pseudoenzyme, pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties. Enzymes are known to catalyze more than 5,000 biochemical reaction types. Other biocatalysts include Ribozyme, catalytic RNA molecules, also called ribozymes. They are sometimes descr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]