Concentric Loop
   HOME



picture info

Concentric Loop
In geometry, two or more objects are said to be ''concentric'' when they share the same center. Any pair of (possibly unalike) objects with well-defined centers can be concentric, including circles, spheres, regular polygons, regular polyhedra, parallelograms, cones, conic sections, and quadrics. Geometric objects are '' coaxial'' if they share the same axis (line of symmetry). Geometric objects with a well-defined axis include circles (any line through the center), spheres, cylinders, conic sections, and surfaces of revolution. Concentric objects are often part of the broad category of '' whorled patterns'', which also includes ''spirals'' (a curve which emanates from a point, moving farther away as it revolves around the point). Geometric properties In the Euclidean plane, two circles that are concentric necessarily have different radii from each other.. However, circles in three-dimensional space may be concentric, and have the same radius as each other, but neverthel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




WA 80 Cm Archery Target
Wa or WA may refer to: Businesses and organizations * KLM Cityhopper (IATA airline designator WA) * Weerbaarheidsafdeling, a paramilitary force associated with the Dutch National Socialist Movement * Western Airlines (IATA airline designator WA) (defunct) * Western Arms, a Japan-based airsoft manufacturer * Western Assurance Company, operating as WA, a Canadian insurance company * World Aquatics, the international governing body of water sports * World Archery, the international governing body of the sport of archery * World Athletics, the international governing body for the sport of athletics Language * Wa (Javanese) (ꦮ), a letter in the Javanese script * Wa (kana), romanisation of the Japanese kana わ and ワ * Wa language, a group of languages spoken by the Wa people * Walloon language (ISO 639 language code ''wa'') Places Asia * Wa (Japan) (和), an old Chinese name for Japan * Wa Land, the natural and historical region inhabited mainly by the Wa peopl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Great Circle
In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Discussion Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geometry are the natural analog of straight lines in Euclidean space. For any pair of distinct non- antipodal points on the sphere, there is a unique great circle passing through both. (Every great circle through any point also passes through its antipodal point, so there are infinitely many great circles through two antipodal points.) The shorter of the two great-circle arcs between two distinct points on the sphere is called the ''minor arc'', and is the shortest surface-path between them. Its arc length is the great-circle distance between the points (the intrinsic distance on a sphere), and is proportional to the measure of the central angle formed by the two points and the center of the sphere. A great circle is the largest ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Shell
In geometry, a spherical shell (a ball shell) is a generalization of an annulus to three dimensions. It is the region of a ball between two concentric spheres of differing radii. Volume The volume of a spherical shell is the difference between the enclosed volume of the outer sphere and the enclosed volume of the inner sphere: : \begin V &= \tfrac43\pi R^3 - \tfrac43\pi r^3 \\ mu &= \tfrac43\pi \bigl(R^3 - r^3\bigr) \\ mu &= \tfrac43\pi (R-r)\bigl(R^2 + Rr + r^2\bigr) \end where is the radius of the inner sphere and is the radius of the outer sphere. Approximation An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness of the shell: : V \approx 4 \pi r^2 t, when is very small compared to (t \ll r). The total surface area of the spherical shell is 4 \pi r^2. See also * Spherical pressure vessel * Ball * Solid torus * Bubble * Sphere A sphere (from Ancient Greek, Greek , ) is a sur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Annulus (mathematics)
In mathematics, an annulus (: annuli or annuluses) is the region between two concentric circles. Informally, it is shaped like a ring or a hardware washer. The word "annulus" is borrowed from the Latin word ''anulus'' or ''annulus'' meaning 'little ring'. The adjectival form is ''annular'' (as in annular eclipse). The open annulus is topologically equivalent to both the open cylinder and the punctured plane. Area The area of an annulus is the difference in the areas of the larger circle of radius and the smaller one of radius : :A = \pi R^2 - \pi r^2 = \pi\left(R^2 - r^2\right) = \pi (R+r)(R-r) . The area of an annulus is determined by the length of the longest line segment within the annulus, which is the chord tangent to the inner circle, in the accompanying diagram. That can be shown using the Pythagorean theorem since this line is tangent to the smaller circle and perpendicular to its radius at that point, so and are sides of a right-angled triangle with hyp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circumsphere
In geometry, a circumscribed sphere of a polyhedron is a sphere that contains the polyhedron and touches each of the polyhedron's vertices. The word circumsphere is sometimes used to mean the same thing, by analogy with the term ''circumcircle''. As in the case of two-dimensional circumscribed circles (circumcircles), the radius of a sphere circumscribed around a polyhedron is called the circumradius of , and the center point of this sphere is called the circumcenter of . Existence and optimality When it exists, a circumscribed sphere need not be the smallest sphere containing the polyhedron; for instance, the tetrahedron formed by a vertex of a cube and its three neighbors has the same circumsphere as the cube itself, but can be contained within a smaller sphere having the three neighboring vertices on its equator. However, the smallest sphere containing a given polyhedron is always the circumsphere of the convex hull of a subset of the vertices of the polyhedron.. In ''De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Midsphere
In geometry, the midsphere or intersphere of a convex polyhedron is a sphere which is tangent to every Edge (geometry), edge of the polyhedron. Not every polyhedron has a midsphere, but the uniform polyhedron, uniform polyhedra, including the regular polyhedron, regular, Quasiregular polyhedron, quasiregular and Semiregular polyhedron, semiregular polyhedra and their Dual polyhedron, duals (Catalan solid, Catalan solids) all have midspheres. The radius of the midsphere is called the midradius. A polyhedron that has a midsphere is said to be midscribed about this sphere. When a polyhedron has a midsphere, one can form two perpendicular circle packing theorem, circle packings on the midsphere, one corresponding to the adjacencies between vertices of the polyhedron, and the other corresponding in the same way to its dual polyhedron, polar polyhedron, which has the same midsphere. The length of each polyhedron edge is the sum of the distances from its two endpoints to their correspond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE