Combinatorial Auction
A combinatorial auction is a type of smart market in which participants can place bids on combinations of discrete heterogeneous items, or “packages”, rather than individual items or continuous quantities. These packages can be also called lots and the whole auction a multi-lot auction. Combinatorial auctions are applicable when bidders have non-additive valuations on bundles of items, that is, they value combinations of items more or less than the sum of the valuations of individual elements of the combination. Simple combinatorial auctions have been used for many years in estate auctions, where a common procedure is to accept bids for packages of items. They have been used recently for truckload transportation, bus routes, industrial procurement, and in the allocation of radio spectrum for wireless communications. In recent years, procurement teams have applied reverse combinatorial auctions in the procurement of goods and services. This application is often referred to as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Smart Market
A smart market is a periodic auction which is cleared by the operations research technique of mathematical optimization, such as linear programming. The smart market is operated by a market manager. Trades are not bilateral, between pairs of people, but rather to or from a pool. A smart market can assist market operation when trades would otherwise have significant transaction costs or externalities. Most other types of auctions can be cleared by a simple process of sorting bids from lowest to highest. Goods may be divisible, as with milk or flour, or indivisible, as with paintings or houses. Finding a market-clearing allocation corresponds to solution of a simple knapsack problem, and does not require much computation. By contrast, a smart market allows market clearing with arbitrary constraints. During market design, constraints are selected to match the relevant physics and economics of the allocation problem. A good overview is given in McCabe et al. (1991). Combinatorial aucti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lagrangian Relaxation
In the field of mathematical optimization, Lagrangian relaxation is a relaxation method which approximates a difficult problem of constrained optimization by a simpler problem. A solution to the relaxed problem is an approximate solution to the original problem, and provides useful information. The method penalizes violations of inequality constraints using a Lagrange multiplier In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function (mathematics), function subject to constraint (mathematics), equation constraints (i.e., subject to the conditio ..., which imposes a cost on violations. These added costs are used instead of the strict inequality constraints in the optimization. In practice, this relaxed problem can often be solved more easily than the original problem. The problem of maximizing the Lagrangian function of the dual variables (the Lagrangian multipliers) is the Lagrangian dual problem. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MIT Press
The MIT Press is the university press of the Massachusetts Institute of Technology (MIT), a private research university in Cambridge, Massachusetts. The MIT Press publishes a number of academic journals and has been a pioneer in the Open Access movement in academic publishing. History MIT Press traces its origins back to 1926 when MIT published a lecture series entitled ''Problems of Atomic Dynamics'' given by the visiting German physicist and later Nobel Prize winner, Max Born. In 1932, MIT's publishing operations were first formally instituted by the creation of an imprint called Technology Press. This imprint was founded by James R. Killian, Jr., at the time editor of MIT's alumni magazine and later to become MIT president. Technology Press published eight titles independently, then in 1937 entered into an arrangement with John Wiley & Sons in which Wiley took over marketing and editorial responsibilities. In 1961, the centennial of MIT's founding charter, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maarten Janssen
Maarten Christiaan Wilhelmus Janssen (born September 19, 1962 in Breda) is a Dutch economist and university professor of microeconomics at the University of Vienna. He is particularly known for his work on consumer search behavior and auction theory. Education Janssen studied econometrics and philosophy of economics at the University of Groningen, where he received his PhD in 1990. From 1997 to 2008, he was professor of microeconomics at Erasmus University Rotterdam and director of the Tinbergen Institute from 2004 to 2009. Since 2008, Janssen has been professor of microeconomics at the Department of Economics, University of Vienna. Scientific contribution Janssen's research focus is theoretical industrial economics. In particular, he conducts research on consumer search behavior and auctions, and has made several methodological contributions in the area of consumer search theory. In addition, Janssen has launched a new subfield that studies the effects of consumer search i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vickrey Auction
A Vickrey auction or sealed-bid second-price auction (SBSPA) is a type of sealed-bid auction. Bidders submit written bids without knowing the bid of the other people in the auction. The highest bidder wins but the price paid is the second-highest bid. This type of auction is strategically similar to an English auction and gives bidders an incentive to bid their true value. The auction was first described academically by Columbia University professor William Vickrey in 1961 though it had been used by stamp collectors since 1893. In 1797 Johann Wolfgang von Goethe sold a manuscript using a sealed-bid, second-price auction. Vickrey's original paper mainly considered auctions where only a single, indivisible good is being sold. The terms ''Vickrey auction'' and ''second-price sealed-bid auction'' are, in this case only, equivalent and used interchangeably. In the case of multiple identical goods, the bidders submit inverse demand curves and pay the opportunity cost. Vickrey auctio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Incentive Compatibility
In game theory and economics, a mechanism is called incentive-compatible (IC) if every participant can achieve their own best outcome by reporting their true preferences. For example, there is incentive compatibility if high-risk clients are better off in identifying themselves as high-risk to insurance firms, who only sell discounted insurance to high-risk clients. Likewise, they would be worse off if they pretend to be low-risk. Low-risk clients who pretend to be high-risk would also be worse off. The concept is attributed to the Russian-born American economist Leonid Hurwicz. Typology There are several different degrees of incentive-compatibility: * The stronger degree is dominant-strategy incentive-compatibility (DSIC). This means that truth-telling is a weakly-dominant strategy, i.e. you fare best or at least not worse by being truthful, regardless of what the others do. In a DSIC mechanism, strategic considerations cannot help any agent achieve better outcomes than the tru ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Packing
Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems. Suppose one has a finite set ''S'' and a list of subsets of ''S''. Then, the set packing problem asks if some ''k'' subsets in the list are pairwise disjoint (in other words, no two of them share an element). More formally, given a universe \mathcal and a family \mathcal of subsets of \mathcal, a ''packing'' is a subfamily \mathcal\subseteq\mathcal of sets such that all sets in \mathcal are pairwise disjoint. The size of the packing is , \mathcal, . In the set packing decision problem, the input is a pair (\mathcal,\mathcal) and an integer t; the question is whether there is a set packing of size t or more. In the set packing optimization problem, the input is a pair (\mathcal,\mathcal), and the task is to find a set packing that uses the most sets. The problem is clearly in NP since, given t subsets, we can easily verify that they a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Landing Slot
__NOTOC__ A landing slot, takeoff slot, or airport slot is a permission granted by a slot coordinator to use the infrastructure of an airport designated as Level 3 (Coordinated Airport) for take-off and/or landing at a specific time and date. Slots should be administered by an independent slot coordinator, often a government aviation regulator such as the U.S. Federal Aviation Administration. In some countries, airport operators are appointed as coordinators even though they are interested parties. Slots are allocated in accordance with guidelines set down by the Worldwide Airport Slot Board with 7 members each from International Air Transport Association (IATA), Airport Council International (ACI) and the Worldwide Airport Coordinator Group (WWACG). All airports worldwide are categorized as either Level 1 (Non-Coordinated Airport), Level 2 (Schedules Facilitated Airport), or Level 3 (Coordinated Airport). At Level 2 airports, the principles governing slot allocation are less str ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Packing
Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems. Suppose one has a finite set ''S'' and a list of subsets of ''S''. Then, the set packing problem asks if some ''k'' subsets in the list are pairwise disjoint (in other words, no two of them share an element). More formally, given a universe \mathcal and a family \mathcal of subsets of \mathcal, a ''packing'' is a subfamily \mathcal\subseteq\mathcal of sets such that all sets in \mathcal are pairwise disjoint. The size of the packing is , \mathcal, . In the set packing decision problem, the input is a pair (\mathcal,\mathcal) and an integer t; the question is whether there is a set packing of size t or more. In the set packing optimization problem, the input is a pair (\mathcal,\mathcal), and the task is to find a set packing that uses the most sets. The problem is clearly in NP since, given t subsets, we can easily verify that they a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Auction
An auction is usually a process of Trade, buying and selling Good (economics), goods or Service (economics), services by offering them up for Bidding, bids, taking bids, and then selling the item to the highest bidder or buying the item from the lowest bidder. Some exceptions to this definition exist and are described in the section about different #Types, types. The branch of economic theory dealing with auction types and participants' behavior in auctions is called auction theory. The open ascending price auction is arguably the most common form of auction and has been used throughout history. Participants bid openly against one another, with each subsequent bid being higher than the previous bid. An auctioneer may announce prices, while bidders submit bids vocally or electronically. Auctions are applied for trade in diverse #Contexts, contexts. These contexts include antiques, Art auction, paintings, rare collectibles, expensive wine auction, wines, commodity, commodities, l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial-time
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is gener ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NP-hard
In computational complexity theory, a computational problem ''H'' is called NP-hard if, for every problem ''L'' which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from ''L'' to ''H''. That is, assuming a solution for ''H'' takes 1 unit time, ''H''s solution can be used to solve ''L'' in polynomial time. As a consequence, finding a polynomial time algorithm to solve a single NP-hard problem would give polynomial time algorithms for all the problems in the complexity class NP. As it is suspected, but unproven, that P≠NP, it is unlikely that any polynomial-time algorithms for NP-hard problems exist. A simple example of an NP-hard problem is the subset sum problem. Informally, if ''H'' is NP-hard, then it is at least as difficult to solve as the problems in NP. However, the opposite direction is not true: some problems are undecidable, and therefore even more difficult to solve than all problems in NP, but they are probably not NP- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |