HOME

TheInfoList



OR:

In the field of
mathematical optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfiel ...
, Lagrangian relaxation is a relaxation method which approximates a difficult problem of
constrained optimization In mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The obj ...
by a simpler problem. A solution to the relaxed problem is an approximate solution to the original problem, and provides useful information. The method penalizes violations of inequality constraints using a
Lagrange multiplier In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function (mathematics), function subject to constraint (mathematics), equation constraints (i.e., subject to the conditio ...
, which imposes a cost on violations. These added costs are used instead of the strict inequality constraints in the optimization. In practice, this relaxed problem can often be solved more easily than the original problem. The problem of maximizing the Lagrangian function of the dual variables (the Lagrangian multipliers) is the Lagrangian dual problem.


Mathematical description

Suppose we are given a linear programming problem, with x\in \mathbb^n and A\in \mathbb^, of the following form: : If we split the constraints in A such that A_1\in \mathbb^, A_2\in \mathbb^ and m_1+m_2=m we may write the system: : We may introduce the constraint (2) into the objective: : If we let \lambda=(\lambda_1,\ldots,\lambda_) be nonnegative weights, we get penalized if we violate the constraint (2), and we are also rewarded if we satisfy the constraint strictly. The above system is called the Lagrangian relaxation of our original problem.


The LR solution as a bound

Of particular use is the property that for any fixed set of \tilde \succeq 0 values, the optimal result to the Lagrangian relaxation problem will be no smaller than the optimal result to the original problem. To see this, let \hat be the optimal solution to the original problem, and let \bar be the optimal solution to the Lagrangian relaxation. We can then see that : The first inequality is true because \hat is feasible in the original problem and the second inequality is true because \bar is the optimal solution to the Lagrangian relaxation.


Iterating towards a solution of the original problem

The above inequality tells us that if we minimize the maximum value we obtain from the relaxed problem, we obtain a tighter limit on the objective value of our original problem. Thus we can address the original problem by instead exploring the partially dualized problem : where we define P(\lambda) as : A Lagrangian relaxation algorithm thus proceeds to explore the range of feasible \lambda values while seeking to minimize the result returned by the inner P problem. Each value returned by P is a candidate upper bound to the problem, the smallest of which is kept as the best upper bound. If we additionally employ a heuristic, probably seeded by the \bar values returned by P, to find feasible solutions to the original problem, then we can iterate until the best upper bound and the cost of the best feasible solution converge to a desired tolerance.


Related methods

The augmented Lagrangian method is quite similar in spirit to the Lagrangian relaxation method, but adds an extra term, and updates the dual parameters \lambda in a more principled manner. It was introduced in the 1970s and has been used extensively. The penalty method does not use dual variables but rather removes the constraints and instead penalizes deviations from the constraint. The method is conceptually simple but usually augmented Lagrangian methods are preferred in practice since the penalty method suffers from ill-conditioning issues.


References


Books

* * Bertsekas, Dimitri P. (1999). ''Nonlinear Programming: 2nd Edition.'' Athena Scientific. . * * * * * *


Articles

* * *Bragin, Mikhail A.; Luh, Peter B.; Yan, Joseph H.; Yu, Nanpeng and Stern, Gary A. (2015). "Convergence of the Surrogate Lagrangian Relaxation Method," ''Journal of Optimization Theory and Applications.'' 164 (1): 173-201, *Bragin, Mikhail A.; Tucker, Emily, L. (2022) "Surrogate "Level-Based" Lagrangian Relaxation for mixed-integer linear programming," ''Scientific Reports''. 12: 22417, doi:10.1038/s41598-022-26264-1 *Neal Young
Lagrangian Relaxation Example
in AlgNotes Blog. *Neal Young, 2012
Toy Examples for Plotkin-Shmoys-Tardos and Arora-Kale solvers
in CSTheory Stack Exchange. {{DEFAULTSORT:Lagrangian Relaxation Convex optimization Relaxation (approximation)