Chiral Perturbation Theory
Chiral perturbation theory (ChPT) is an effective field theory constructed with a Lagrangian (field theory), Lagrangian consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as well as the other symmetries of parity (physics), parity and charge conjugation.Heinrich Leutwyler (2012), Chiral perturbation theory Scholarpedia, 7(10):8708. ChPT is a theory which allows one to study the low-energy dynamics of QCD on the basis of this underlying chiral symmetry. Goals In the theory of the strong interaction of the Standard Model, standard model, we describe the interactions between quarks and gluons. Due to the running of the strong coupling constant, we can apply perturbation theory in the coupling constant only at high energies. But in the ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Effective Field Theory
In physics, an effective field theory is a type of approximation, or effective theory, for an underlying physical theory, such as a quantum field theory or a statistical mechanics model. An effective field theory includes the appropriate degrees of freedom (physics and chemistry), degrees of freedom to describe physical phenomena occurring at a chosen length scale or energy scale, while ignoring substructure and degrees of freedom at shorter distances (or, equivalently, at higher energies). Intuitively, one averages over the behavior of the underlying theory at shorter length scales to derive what is hoped to be a simplified model at longer length scales. Effective field theories typically work best when there is a large separation between length scale of interest and the length scale of the underlying dynamics. Effective field theories have found use in particle physics, statistical mechanics, condensed matter physics, general relativity, and hydrodynamics. They simplify calculati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strong Interaction
In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, neutron, neutrons, and other hadron particles, and also binds neutrons and protons to create atomic nuclei, where it is called the nuclear force. Most of the mass–energy equivalence, mass of a proton or neutron is the result of the strong interaction energy; the individual quarks provide only about 1% of the mass of a proton. At the range of 10−15 m (1 femtometer, slightly more than the radius of a nucleon), the strong force is approximately 100 times as strong as electromagnetism, 106 times as strong as the weak interaction, and 1038 times as strong as Gravity, gravitation. In the context of atomic nuclei, the force binds protons and neutrons together to form a nucleus and is called the nuclear force (or ''residual strong force'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-perturbative
In mathematics and physics, a non-perturbative function (mathematics), function or process is one that cannot be described by perturbation theory. An example is the function : f(x) = e^, which does not equal its own Taylor series in any neighborhood around ''x'' = 0. Every coefficient of the Taylor expansion around ''x'' = 0 is exactly zero, but the function is non-zero if ''x'' ≠ 0. In physics, such functions arise for phenomena which are impossible to understand by perturbation theory, at any finite order. In quantum field theory, 't Hooft–Polyakov monopoles, domain walls, flux tubes, and instantons are examples. A concrete, physical example is given by the Schwinger effect, whereby a strong electric field may spontaneously decay into electron-positron pairs. For not too strong fields, the rate per unit volume of this process is given by, : \Gamma = \frac \mathrm^ which cannot be expanded in a Taylor series in the electric charge e, or the electric field strength E. Her ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chiral Model
In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group G as its target manifold. When the model was originally introduced, this Lie group was the SU(''N''), where ''N'' is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(''N''). The internal global symmetry of this model is G_L \times G_R, the left and right copies, respectively; where the left copy acts as the left action upon the target space, and the right copy acts as the right action. Phenomenologically, the left copy represents flavor rotations among the left-handed quarks, while the right copy describes ro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kaon
In particle physics, a kaon, also called a K meson and denoted , is any of a group of four mesons distinguished by a quantum number called strangeness. In the quark model they are understood to be bound states of a strange quark (or antiquark) and an up or down antiquark (or quark). Kaons have proved to be a copious source of information on the nature of fundamental interactions since their discovery by George Rochester and Clifford Butler at the Department of Physics and Astronomy, University of Manchester in cosmic rays in 1947. They were essential in establishing the foundations of the Standard Model of particle physics, such as the quark model of hadrons and the theory of quark mixing (the latter was acknowledged by a Nobel Prize in Physics in 2008). Kaons have played a distinguished role in our understanding of fundamental conservation laws: CP violation, a phenomenon generating the observed matter–antimatter asymmetry of the universe, was discovered in the kaon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number. Until the 1960s, nucleons were thought to be elementary particles, not made up of smaller parts. Now they are understood as composite particles, made of three quarks bound together by the strong interaction. The interaction between two or more nucleons is called internucleon interaction or nuclear force, which is also ultimately caused by the strong interaction. (Before the discovery of quarks, the term "strong interaction" referred to just internucleon interactions.) Nucleons sit at the boundary where particle physics and nuclear physics overlap. Particle physics, particularly quantum chromodynamics, provides the fundamental equations that describe the properties of quarks and of the strong interaction. These equations describe quantitatively how quarks can bind together into protons ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coupling Constants
In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the " charges" of the bodies (i.e. the electric charge for electrostatic and the mass for Newtonian gravity) divided by the distance squared, r^2, between the bodies; thus: G in F=G m_1 m_2/r^2 for Newtonian gravity and k_\text in F=k_\textq_1 q_2/r^2 for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers. A modern and more general definition uses the Lagrangian \mathcal (or equivalently the Hamiltonian \mathcal) of a system. Usually, \mathcal (or \mathcal) of a system describing an interaction can be separated into a ''kinetic part'' T and an ''interaction part'' V: \mathcal=T-V (or \mathcal=T+V). In field theory, V always contains 3 fields ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Propagator
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called ''(causal) Green's functions'' (called "''causal''" to distinguish it from the elliptic Laplacian Green's function). Non-relativistic propagators In non-relativistic quantum mechanics, the propagator gives the probability amplitude for a particle to travel from one spatial point (x') at one time (t') to another spatial point (x) at a later time (t). The Green's function G for the Schrödinger equat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
One-loop
In physics, a one-loop Feynman diagram is a connected Feynman diagram with only one cycle ( unicyclic). Such a diagram can be obtained from a connected tree diagram by taking two external lines of the same type and joining them together into an edge. Diagrams with loops (in graph theory, these kinds of loops are called cycles, while the word loop is an edge connecting a vertex with itself) correspond to the quantum corrections to the classical field theory. Because one-loop diagrams only contain one cycle, they express the next-to-classical contributions called the '' semiclassical contributions''. One-loop diagrams are usually computed as the integral over one independent momentum that can "run in the cycle". The Casimir effect, Hawking radiation and Lamb shift are examples of phenomena whose existence can be implied using one-loop Feynman diagrams, especially the well-known "triangle diagram": :: The evaluation of one-loop Feynman diagrams usually leads to divergent expre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Observable
In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum mechanics, an observable is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value. Physically meaningful observables must also satisfy transformation laws that relate observations performed by different observers in different frames of reference. These transformation laws are automorphisms of the state space, that is bijective transformations that preserve certain mathematical properties of the space in question. Quantum mechanics In quantum mechanics, observables manifest as self-adjoint operators on a separable complex Hilbert space ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Renormalizable
Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that is used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian. For example, an electron theory may begin by postulating an electron with an initial mass and charge. In quantum field theory a cloud of virtual particles, such as photons, positrons, and others surrounds and interacts with the initial electron. Accounting for the interactions of the surrounding particles (e.g. collisions at different energies) shows that the electron-system behaves as if it had a different mass and charge than initially postulated. Renormalization, in this example, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |