Carbon Quantum Dots
Carbon quantum dots also commonly called carbon nano dots or simply carbon dots (abbreviated as CQDs, C-dots or CDs) are carbon nanoparticles which are less than Orders of magnitude (length)#10 nanometres, 10 nm in size and have some form of surface passivation. History CQDs were first discovered by Xu et al. in 2004 accidentally during the purification of Carbon nanotube, single-walled carbon nanotubes. This discovery triggered extensive studies to exploit the fluorescence properties of CQDs. As a new class of fluorescent carbon nanomaterials, CQDs possess the attractive properties of high stability, good conductivity, low toxicity, environmental friendliness, simple synthetic routes as well as comparable optical properties to quantum dots. Carbon quantum dots have been extensively investigated especially due to their strong and tunable fluorescence emission properties, which enable their applications in biomedicine, optronics, catalysis, and sensing. In most cases CQDs em ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nanoparticles
A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead. Nanoparticles are distinguished from microparticles (1-1000 μm), "fine particles" (sized between 100 and 2500 nm), and "coarse particles" (ranging from 2500 to 10,000 nm), because their smaller size drives very different physical or chemical properties, like colloidal properties and ultrafast optical effects or electric properties. Being more subject to the Brownian motion, they usually do not sediment, like colloid, colloidal particles that conversely are usually understood to range from 1 to 1000 nm. Being much smaller than the wavelengths of visible light (400-700 nm), nanoparticles cannot be seen with ordinary ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hydrogen Evolution Reaction
Hydrogen evolution reaction (HER) is a chemical reaction that yields H2. The conversion of protons to H2 requires reducing equivalents and usually a catalyst. In nature, HER is catalyzed by hydrogenase enzymes which rely on iron- and nickel-based catalysts. Commercial electrolyzers typically employ supported nickel-based catalysts. HER in electrolysis HER is a key reaction which occurs in the electrolysis of water for the production of hydrogen for both industrial energy applications, as well as small-scale laboratory research. Due to the abundance of water on Earth, hydrogen production poses a potentially scalable process for fuel generation. This is an alternative to steam methane reforming for hydrogen production, which has significant greenhouse gas emissions, and as such scientists are looking to improve and scale up electrolysis processes that have fewer emissions. Electrolysis mechanism In acidic conditions, the hydrogen evolution reaction follows the formula: : In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Silicon Quantum Dot
Silicon quantum dots are metal-free biologically compatible quantum dots with photoluminescence emission maxima that are tunable through the visible to near-infrared spectral regions. These quantum dots have unique properties arising from their indirect band gap, including long-lived luminescent excited-states and large Stokes shifts. A variety of disproportionation, pyrolysis, and solution protocols have been used to prepare silicon quantum dots, however it is important to note that some solution-based protocols for preparing luminescent silicon quantum dots actually yield carbon quantum dots instead of the reported silicon. The unique properties of silicon quantum dots lend themselves to an array of potential applications: biological imaging, luminescent solar concentrators, light emitting diodes, sensors, and lithium-ion battery anodes. History Silicon has found extensive use in electronic devices; however, bulk Si has limited optical applications. This is largely due to t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Dot
Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic in nanotechnology and materials science. When a quantum dot is illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conduction band. The excited electron can drop back into the valence band releasing its energy as light. This light emission ( photoluminescence) is illustrated in the figure on the right. The color of that light depends on the energy difference between the discrete energy levels of the quantum dot in the conduction band and the valence band. In other words, a quantum dot can be defined as a structure on a semiconductor which is capable of confi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graphene Quantum Dot
Graphene quantum dots (GQDs) are graphene nanoparticles with a size less than 100 nm. Due to their exceptional properties such as low toxicity, stable photoluminescence, chemical stability and pronounced quantum confinement effect, GQDs are considered as a novel material for biological, opto-electronics, energy and environmental applications. Properties Graphene quantum dots (GQDs) consist of one or a few layers of graphene and are smaller than 100 nm in size. They are chemically and physically stable, have a large surface to mass ratio and can be dispersed in water easily due to functional groups at the edges. The fluorescence emission of GQDs can extend across a broad spectral range, including the UV, visible, and IR. The origin of GQD fluorescence emission is a subject of debate, as it has been related to quantum confinement effects, defect states and functional groups that might depend on the pH, when GQDs are dispersed in water. Their electronic structure depends s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carbon Nanotube Quantum Dot
A carbon nanotube quantum dot (CNT QD) is a small region of a carbon nanotube in which electrons are confined. Formation A CNT QD is formed when electrons are confined to a small region within a carbon nanotube. This is normally accomplished by application of a voltage to a gate electrode, dragging the valence band of the CNT down in energy, thereby causing electrons to pool in a region in the vicinity of the electrode. Experimentally this is accomplished by laying a CNT on a silicon dioxide surface, sitting on a doped silicon wafer. This can be done by chemical vapor deposition using carbon monoxide. The silicon wafer serves as the gate electrode. Metallic leads can then be laid over the nanotube in order to connect the CNT QD up to an electrical circuit. Electronic structure The CNT QD has interesting properties as a result of the strong correlation between the confined electrons. In addition to this the electrons possess orbital angular momentum, as is characteristic of C ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carbon Nanotubes In Photovoltaics
Organic photovoltaic devices (OPVs) are fabricated from thin films of organic semiconductors, such as polymers and small-molecule compounds, and are typically on the order of 100 nm thick. Because polymer based OPVs can be made using a coating process such as spin coating or inkjet printing, they are an attractive option for inexpensively covering large areas as well as flexible plastic surfaces. A promising low cost alternative to conventional solar cells made of crystalline silicon, there is a large amount of research being dedicated throughout industry and academia towards developing OPVs and increasing their power conversion efficiency. Single wall carbon nanotubes as light harvesting media Single wall carbon nanotubes possess a wide range of direct bandgaps matching the solar spectrum, strong photoabsorption, from infrared to ultraviolet, and high carrier mobility and reduced carrier transport scattering, which make themselves ideal photovoltaic material. Photovoltaic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cadmium-free Quantum Dot
Quantum dots (QDs) are semiconductor nanoparticles with a size less than 10 nm. They exhibited size-dependent properties especially in the optical absorption and the photoluminescence (PL). Typically, the fluorescence emission peak of the QDs can be tuned by changing their diameters. So far, QDs were consisted of different group elements such as CdTe, CdSe, CdS in the II-VI category, InP or InAs in the III-V category, CuInS2 or AgInS2 in the I–III–VI2 category, and PbSe/PbS in the IV-VI category. These QDs are promising candidates as fluorescent labels in various biological applications such as bioimaging, biosensing and drug delivery. However, most of the QDs in the commercial market are cadmium (Cd)-based QDs. Their potential toxicity in the biological environment has been debated over the past decade as the Cd2+ ions released from the QD surface are highly toxic to the cells and tissues. Thus, many researchers have focused on the development of cadmium-free quantum do ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combustion And Flame
''Combustion and Flame'' is a monthly peer-reviewed scientific journal published by Elsevier on behalf of the Combustion Institute. It covers fundamental research on combustion science. The editors-in-chief are Fokion Egolfopoulos (University of Southern California) and Thierry Poinsot (Centre National de la Recherche Scientifique). Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 4.185, ranking it 9th out of 60 in the category of ''Thermodynamics''. See also References External links * {{Official website, http://www.journals.elsevier.com/combustion-and-flame Elsevier academic journals Chemistry journals Physics journ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fluorescent Paint
Luminous paint (or luminescent paint) is paint that emits visible light through fluorescence, phosphorescence, or radioluminescence. Fluorescent paint Fluorescent paints 'glow' when exposed to short-wave ultraviolet (UV) radiation. These UV wavelengths are found in sunlight and many artificial lights, but the paint requires a special black light to view so these glowing-paint applications are called 'black-light effects'. Fluorescent paint is available in a wide range of colors and is used in theatrical lighting and effects, posters, and as entertainment for children. The fluorescent chemicals in fluorescent paint absorb the invisible UV radiation, then emit the energy as longer wavelength visible light of a particular color. Human eyes perceive this light as the unusual 'glow' of fluorescence. The painted surface also reflects any ordinary visible light striking it, which tends to wash out the dim fluorescent glow. So viewing fluorescent paint requires a longwave UV lig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supercapacitor
alt=Supercapacitor, upright=1.5, Schematic illustration of a supercapacitor upright=1.5, A diagram that shows a hierarchical classification of supercapacitors and capacitors of related types A supercapacitor (SC), also called an ultracapacitor, is a high-capacity capacitor, with a capacitance value much higher than solid-state capacitors but with lower voltage limits. It bridges the gap between electrolytic capacitors and rechargeable batteries. It typically stores 10 to 100 times more energy per unit volume or mass than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerates many more charge and discharge cycles than rechargeable batteries. Unlike ordinary capacitors, supercapacitors do not use the conventional solid dielectric, but rather, they use electrostatic double-layer capacitance and electrochemical pseudocapacitance, both of which contribute to the total energy storage of the capacitor. Supercapacitors are used in applica ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Organic Solar Cell
An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells. The molecules used in organic solar cells are solution-processable at high throughput and are cheap, resulting in low production costs to fabricate a large volume. Combined with the flexibility of organic molecules, organic solar cells are potentially cost-effective for photovoltaic applications. Molecular engineering (''e.g.,'' changing the length and functional group of polymers) can change the band gap, allowing for electronic tunability. The optical absorption coefficient of organic molecules is high, so a large amount of light can be absorbed with a small amount of materials, usually on the order of hundreds of na ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |