Zinbiel Algebra
In mathematics, a Zinbiel algebra or dual Leibniz algebra is a module over a commutative ring with a bilinear product satisfying the defining identity: :(a \circ b) \circ c = a \circ (b \circ c) + a \circ (c \circ b). Zinbiel algebras were introduced by . The name was proposed by Jean-Michel Lemaire as being "opposite" to Leibniz algebra. In any Zinbiel algebra, the symmetrised product :a \star b = a \circ b + b \circ a is associative. A Zinbiel algebra is the Koszul dual concept to a Leibniz algebra. The free Zinbiel algebra over ''V'' is the tensor algebra In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra over a field, algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', ... with product :(x_0 \otimes \cdots \otimes x_p) \circ (x_ \otimes \cdots \otimes x_) = x_0 \sum_ (x_1,\ldots,x_), where the sum is over all (p,q) shuffles. Referenc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operations of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Commutative rings appear in the following chain of subclass (set theory), class inclusions: Definition and first examples Definition A ''ring'' is a Set (mathematics), set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bilinear Map
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. A bilinear map can also be defined for modules. For that, see the article pairing. Definition Vector spaces Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function B : V \times W \to X such that for all w \in W, the map B_w v \mapsto B(v, w) is a linear map from V to X, and for all v \in V, the map B_v w \mapsto B(v, w) is a linear map from W to X. In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed. Such a map B satisfies the following properties. * For any \lambda \in F, B(\lambda v,w) = B(v, \lambda w) = \lambda B(v, w). * The map B is additive in both components: if v_1, v_2 \in V an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leibniz Algebra
In mathematics, a (right) Leibniz algebra, named after Gottfried Wilhelm Leibniz, sometimes called a Loday algebra, after Jean-Louis Loday, is a module ''L'' over a commutative ring ''R'' with a bilinear product _ , _ satisfying the Leibniz identity : a,bc] = ,c">,[b,c<_a>+__a,c.html" ;"title=",c.html" ;"title=",[b,c">,[b,c+ a,c">,c.html" ;"title=",[b,c">,[b,c+ a,cb \, In other words, right multiplication by any element ''c'' is a derivation (abstract algebra)">derivation. If in addition the bracket is alternating ([''a'', ''a''] = 0) then the Leibniz algebra is a Lie algebra. Indeed, in this case [''a'', ''b''] = −[''b'', ''a''] and the Leibniz identity is equivalent to Jacobi's identity ( 'b'', ''c''.html" ;"title="'a'', [''b'', ''c''">'a'', [''b'', ''c'' + [''c'', [''a'', ''b'' + [''b'', [''c'', ''a'' = 0). Conversely any Lie algebra is obvi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations: \begin (2 + 3) + 4 &= 2 + (3 + 4) = 9 \,\\ 2 \times (3 \times 4) &= (2 \times 3) \times 4 = 24 . \end Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds true when performing addition and multiplication on any real numbers, i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Koszul Duality
In mathematics, Koszul duality, named after the French mathematician Jean-Louis Koszul, is any of various kinds of dualities found in representation theory of Lie algebras, abstract algebras (semisimple algebra) and topology (e.g., equivariant cohomology). The prototypical example of Koszul duality was introduced by Joseph Bernstein, Israel Gelfand, and Sergei Gelfand,. It establishes a duality between the derived category of a symmetric algebra and that of an exterior algebra, as well as the BGG correspondence, which links the stable category of finite-dimensional graded modules over an exterior algebra to the bounded derived category of coherent sheaves on projective space. The importance of the notion rests on the suspicion that Koszul duality seems quite ubiquitous in nature. Koszul duality for graded modules over Koszul algebras The simplest, and in a sense prototypical case of Koszul duality arises as follows: for a 1-dimensional vector space ''V'' over a field ''k'', with dual ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Object
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set ''A'' can be thought of as being a "generic" algebraic structure over ''A'': the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices. The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations). It also has a formulation in terms of category theory, although this is in yet more abstract terms. Definition Free objects are the direct generalization to categories of the notion of basis in a vector space. A linear function between vector spaces is entirely determined by its values on a basis of the vector space The following definition translates this to any category. A concrete category is a category that is equipped with a faithf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Algebra
In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra over a field, algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing ''V'', in the sense of the corresponding universal property (see #Adjunction and universal property, below). The tensor algebra is important because many other algebras arise as quotient associative algebra, quotient algebras of ''T''(''V''). These include the exterior algebra, the symmetric algebra, Clifford algebras, the Weyl algebra and universal enveloping algebras. The tensor algebra also has two coalgebra structures; one simple one, which does not make it a bi-algebra, but does lead to the concept of a cofree coalgebra, and a more complicated one, which yields a bialgebra, and can be extended by gi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shuffle Product
In mathematics, a shuffle algebra is a Hopf algebra with a basis corresponding to words on some set, whose product is given by the shuffle product ''X'' ⧢ ''Y'' of two words ''X'', ''Y'': the sum of all ways of interlacing them. The interlacing is given by the riffle shuffle permutation. The shuffle algebra on a finite set is the graded dual of the universal enveloping algebra of the free Lie algebra on the set. Over the rational numbers, the shuffle algebra is isomorphic to the polynomial algebra in the Lyndon words. The shuffle product occurs in generic settings in non-commutative algebras; this is because it is able to preserve the relative order of factors being multiplied together - the riffle shuffle permutation. This can be held in contrast to the divided power structure, which becomes appropriate when factors are commutative. Shuffle product The shuffle product of words of lengths ''m'' and ''n'' is a sum over the ways of interleaving the two words, as shown in the f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Duke Mathematical Journal
''Duke Mathematical Journal'' is a peer-reviewed mathematics journal published by Duke University Press. It was established in 1935. The founding editors-in-chief were David Widder, Arthur Coble, and Joseph Miller Thomas. The first issue included a paper by Solomon Lefschetz. Leonard Carlitz served on the editorial board for 35 years, from 1938 to 1973. The current managing editor is Richard Hain (Duke University). Impact According to the journal homepage, the journal has a 2018 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 2.194, ranking it in the top ten mathematics journals in the world. References External links * Mathematics journals Mathematical Journal Academic journals established in 1935 Multilingual journals English-language journals ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, op ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |