Zero-sum Ramsey Theory
In mathematics, zero-sum Ramsey theory or zero-sum theory is a branch of combinatorics. It deals with problems of the following kind: given a combinatorial structure whose elements are assigned different weights (usually elements from an Abelian group A), one seeks for conditions that guarantee the existence of certain substructure whose weights of its elements sum up to zero (in A). It combines tools from number theory, algebra, linear algebra, graph theory, discrete analysis, and other branches of mathematics. The classic result in this area is the 1961 theorem of Paul Erdős, Abraham Ginzburg, and Abraham Ziv: for any 2m - 1 elements of \mathbb_m, there is a subset of size m that sums to zero. (This bound is tight, as a sequence of m - 1 zeroes and m - 1 ones cannot have any subset of size m summing to zero.) There are known proofs of this result using the Cauchy-Davenport theorem, Fermat's little theorem In number theory, Fermat's little theorem states that if is a prime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorial
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called '' systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algebra studies algebraic structures, which consist of a set of mathemati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathematics), matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as line (geometry), lines, plane (geometry), planes and rotation (mathematics), rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to Space of functions, function spaces. Linear algebra is also used in most sciences and fields of engineering because it allows mathematical model, modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Analysis
''Discrete Analysis'' is a mathematics journal covering the applications of analysis to discrete structures. ''Discrete Analysis'' is an arXiv overlay journal, meaning the journal's content is hosted on the arXiv. History ''Discrete Analysis'' was created by Timothy Gowers to demonstrate that a high-quality mathematics journal could be inexpensively produced outside of the traditional academic publishing industry. The journal is open access, and submissions are free for authors. The journal's 2018 MCQ is 1.21.''Discrete Analysis'', MathSciNet MathSciNet is a searchable online bibliographic database created by the American Mathematical Society in 1996. It contains all of the contents of the journal ''Mathematical Reviews'' (MR) since 1940 along with an extensive author database, links ..., 2019. Accessed 2019-09-02. References * * External links *{{Official, https://discreteanalysisjournal.com/ Open access journals Mathematical analysis journals Academic journals est ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paul Erdős
Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered on discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He was known both for his social practice of mathematics, working with more than 500 collaborators, and for his eccentric lifestyle; ''Time'' magazine called him "The Oddball's Oddba ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abraham Ginzburg
Abraham Ginzburg (Hebrew: אברהם גינזבורג) (1926–2020) was a Professor Emeritus of Computer Science. He served as Vice President of the Technion Institute, and President of the Open University of Israel. Biography Ginzburg was born on 1 August 1926 in Navahrudak, Belarus. He began acquiring his education during World War II, after which he taught the children of Sh'erit ha-Pletah mathematics. In 1949, Ginzburg immigrated to Israel, and began studying in the Technion Faculty of Electrical Engineering, where he received his BSc summa cum laude. Three years later, he acquired a Master's degree in electrical engineering and in 1959, he received his PhD in mathematics, and was appointed lecturer in the Faculty of Mathematics of the Technion. During 1965–1967, he served as a visiting lecturer in Carnegie Mellon University, in Pittsburgh, Pennsylvania. Upon returning to Israel in 1967, he was appointed associate professor of Mathematics in the Technion Institute, an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abraham Ziv
Abraham Ziv (; –) was an Israeli mathematician, known for his contributions to the Zero-sum problem as one of the discoverers of the Erdős–Ginzburg–Ziv theorem. Biography Abraham Zubkowski (later Ziv) was born in Avihayil to Haim and Zila Zubkovski. In the 1950s, he changed his surname as part of the widespread Hebraization of surnames trend. He studied at the Technion – Israel Institute of Technology, where he earned his Ph.D. in mathematics, after receiving his master's degree from Harvard University. Academic career In 1961, at the age of 21, Ziv proved along with Paul Erdős and Abraham Ginzburg Abraham Ginzburg (Hebrew: אברהם גינזבורג) (1926–2020) was a Professor Emeritus of Computer Science. He served as Vice President of the Technion Institute, and President of the Open University of Israel. Biography Ginzburg was bo ... the general result that every sequence of 2n - 1\ elements of \mathbb/n\mathbb contains n terms that sum to zero. In 197 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cauchy-Davenport Theorem
In additive number theory and combinatorics, a restricted sumset has the form :S=\, where A_1,\ldots,A_n are finite nonempty subsets of a field ''F'' and P(x_1,\ldots,x_n) is a polynomial over ''F''. If P is a constant non-zero function, for example P(x_1,\ldots,x_n)=1 for any x_1,\ldots,x_n, then S is the usual sumset A_1+\cdots+A_n which is denoted by nA if A_1=\cdots=A_n=A. When :P(x_1,\ldots,x_n) = \prod_ (x_j-x_i), ''S'' is written as A_1\dotplus\cdots\dotplus A_n which is denoted by n^ A if A_1=\cdots=A_n=A. Note that , ''S'', > 0 if and only if there exist a_1\in A_1,\ldots,a_n\in A_n with P(a_1,\ldots,a_n)\not=0. Cauchy–Davenport theorem The Cauchy–Davenport theorem, named after Augustin Louis Cauchy and Harold Davenport, asserts that for any prime ''p'' and nonempty subsets ''A'' and ''B'' of the prime order cyclic group \mathbb/p\mathbb we have the inequalityGeroldinger & Ruzsa (2009) pp.141–142 :, A+B, \ge \min\ where A+B := \, i.e. we're using mod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |