HOME



picture info

Zero-error Probabilistic Polynomial Time
In complexity theory, ZPP (zero-error probabilistic polynomial time) is the complexity class of problems for which a probabilistic Turing machine exists with these properties: * It always returns the correct YES or NO answer. * The running time is polynomial in expectation for every input. In other words, if the algorithm is allowed to flip a truly-random coin while it is running, it will always return the correct answer and, for a problem of size ''n'', there is some polynomial ''p''(''n'') such that the average running time will be less than ''p''(''n''), even though it might occasionally be much longer. Such an algorithm is called a Las Vegas algorithm. Alternatively, ZPP can be defined as the class of problems for which a probabilistic Turing machine exists with these properties: * It always runs in polynomial time. * It returns an answer YES, NO or DO NOT KNOW. * The answer is always either DO NOT KNOW or the correct answer. * It returns DO NOT KNOW with probability at mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Randomised Complexity Classes 2
Randomization is a statistical process in which a random mechanism is employed to select a sample from a population or assign subjects to different groups.Oxford English Dictionary "randomization" The process is crucial in ensuring the random allocation of experimental units or treatment protocols, thereby minimizing selection bias and enhancing the statistical validity. It facilitates the objective comparison of treatment effects in experimental design, as it equates groups statistically by balancing both known and unknown factors at the outset of the study. In statistical terms, it underpins the principle of probabilistic equivalence among groups, allowing for the unbiased estimation of treatment effects and the generalizability of conclusions drawn from sample data to the broader population. Randomization is not haphazard; instead, a random process is a sequence of random variables describing a process whose outcomes do not follow a deterministic pattern but follow an evolution ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and explores the relationships between these classifications. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of logic gate, gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polynomial Time
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is gener ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complexity Class
In computational complexity theory, a complexity class is a set (mathematics), set of computational problems "of related resource-based computational complexity, complexity". The two most commonly analyzed resources are time complexity, time and space complexity, memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time complexity, time or space complexity, memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements. For instance, the class P (complexity), P is the set of decision problems solvable by a deterministic Turing machine in polynomial time. There are, however, many complexity classes defined in terms of other types of problems (e.g. Counting problem (complexity), counting problems and function problems) and using other models of computation (e.g. probabil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probabilistic Turing Machine
In theoretical computer science, a probabilistic Turing machine is a non-deterministic Turing machine that chooses between the available transitions at each point according to some probability distribution. As a consequence, a probabilistic Turing machine can (unlike a deterministic Turing machine) have stochastic results; that is, on a given input and instruction state machine, it may have different run times, or it may not halt at all; furthermore, it may accept an input in one execution and reject the same input in another execution. In the case of equal probabilities for the transitions, probabilistic Turing machines can be defined as deterministic Turing machines having an additional "write" instruction where the value of the write is uniformly distributed in the Turing machine's alphabet (generally, an equal likelihood of writing a "1" or a "0" on to the tape). Another common reformulation is simply a deterministic Turing machine with an added tape full of random bits ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Las Vegas Algorithm
In computing, a Las Vegas algorithm is a randomized algorithm that always gives Correctness (computer science), correct results; that is, it always produces the correct result or it informs about the failure. However, the runtime of a Las Vegas algorithm differs depending on the input. The usual definition of a Las Vegas algorithm includes the restriction that the ''expected'' runtime be finite, where the expectation is carried out over the space of random information, or entropy, used in the algorithm. An alternative definition requires that a Las Vegas algorithm always terminates (is Effective method, effective), but may output a Partial function#Bottom element, symbol not part of the solution space to indicate failure in finding a solution. The nature of Las Vegas algorithms makes them suitable in situations where the number of possible solutions is limited, and where verifying the correctness of a candidate solution is relatively easy while finding a solution is complex. Systema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded-error Probabilistic Polynomial
computational complexity theory, a branch of computer science, bounded-error probabilistic polynomial time (BPP) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded by 1/3 for all instances. BPP is one of the largest ''practical'' classes of problems, meaning most problems of interest in BPP have efficient probabilistic algorithms that can be run quickly on real modern machines. BPP also contains P, the class of problems solvable in polynomial time with a deterministic machine, since a deterministic machine is a special case of a probabilistic machine. Informally, a problem is in BPP if there is an algorithm for it that has the following properties: *It is allowed to flip coins and make random decisions *It is guaranteed to run in polynomial time *On any given run of the algorithm, it has a probability of at most 1/3 of giving the wrong answer, whether the answer is YES or NO. Definition A languag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




RP (complexity)
In computational complexity theory, randomized polynomial time (RP) is the complexity class of problems for which a probabilistic Turing machine exists with these properties: * It always runs in polynomial time in the input size * If the correct answer is NO, it always returns NO * If the correct answer is YES, then it returns YES with probability at least 1/2 (otherwise, it returns NO). In other words, the algorithm is allowed to flip a truly random coin while it is running. The only case in which the algorithm can return YES is if the actual answer is YES; therefore if the algorithm terminates and produces YES, then the correct answer is definitely YES; however, the algorithm can terminate with NO ''regardless'' of the actual answer. That is, if the algorithm returns NO, it might be wrong. Some authors call this class R, although this name is more commonly used for the class of recursive languages. If the correct answer is YES and the algorithm is run ''n'' times with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Computer
A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of both particles and waves, and quantum computing takes advantage of this behavior using specialized hardware. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer. Theoretically a large-scale quantum computer could break some widely used encryption schemes and aid physicists in performing physical simulations; however, the current state of the art is largely experimental and impractical, with several obstacles to useful applications. The basic unit of information in quantum computing, the qubit (or "quantum bit"), serves the same function as the bit in classical computing. However, unlike a classical bit, which can be in one of two states (a binary), a qubit can exist in a superposition of its two " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expected Value
In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean, mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would expect to get in reality. The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by Integral, integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration. The expected value of a random variable is often denoted by , , or , with a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov's Inequality
In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive Constant (mathematics), constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality. It is named after the Russian mathematician Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev (Markov's teacher), and many sources, especially in Mathematical analysis, analysis, refer to it as Chebyshev's inequality (sometimes, calling it the first Chebyshev inequality, while referring to Chebyshev's inequality as the second Chebyshev inequality) or Irénée-Jules Bienaymé, Bienaymé's inequality. Markov's inequality (and other similar inequalities) relate probabilities to expected value, expectations, and provide (frequently loose but still useful) bounds for the cumulative distribution function of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Low (complexity)
In computational complexity theory, a language ''B'' (or a complexity class ''B'') is said to be low for a complexity class ''A'' (with some reasonable relativized version of ''A'') if ''A''''B'' = ''A''; that is, ''A'' with an oracle for ''B'' is equal to ''A''. Such a statement implies that an abstract machine which solves problems in ''A'' achieves no additional power if it is given the ability to solve problems in ''B'' at unit cost. In particular, this means that if ''B'' is low for ''A'' then ''B'' is contained in ''A''. Informally, lowness means that problems in ''B'' are not only solvable by machines which can solve problems in ''A'', but are “easy to solve”. An ''A'' machine can simulate many oracle queries to ''B'' without exceeding its resource bounds. Results and relationships that establish one class as low for another are often called lowness results. The set of languages low for a complexity class ''A'' is denoted ''Low(A)''. Classes that are low for themsel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]