HOME





Wronskian
In mathematics, the Wronskian of ''n'' differentiable functions is the determinant formed with the functions and their derivatives up to order . It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions. Definition The Wrońskian of two differentiable functions and is W(f,g)=f g' - g f' . More generally, for real- or complex-valued functions , which are times differentiable on an interval , the Wronskian W(f_1,\ldots,f_n) is a function on x\in I defined by W(f_1, \ldots, f_n) (x)= \det \begin f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_1'(x) & f_2'(x) & \cdots & f_n' (x)\\ \vdots & \vdots & \ddots & \vdots \\ f_1^(x)& f_2^(x) & \cdots & f_n^(x) \end. This is the determinant of the matrix constructed by placing the functions in the first row, the first derivatives of the functions in the second row, and so on through the (n-1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abel's Identity
In mathematics, Abel's identity (also called Abel's formula or Abel's differential equation identity) is an equation that expresses the Wronskian of two solutions of a homogeneous second-order linear ordinary differential equation in terms of a coefficient of the original differential equation. The relation can be generalised to ''n''th-order linear ordinary differential equations. The identity is named after the Norway, Norwegian mathematician Niels Henrik Abel. Since Abel's identity relates to the different linear independence, linearly independent solutions of the differential equation, it can be used to find one solution from the other. It provides useful identities relating the solutions, and is also useful as a part of other techniques such as the method of variation of parameters. It is especially useful for equations such as Bessel function, Bessel's equation where the solutions do not have a simple analytical form, because in such cases the Wronskian is difficult to compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the matrix and the linear map represented, on a given basis (linear algebra), basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible matrix, invertible and the corresponding linear map is an linear isomorphism, isomorphism. However, if the determinant is zero, the matrix is referred to as singular, meaning it does not have an inverse. The determinant is completely determined by the two following properties: the determinant of a product of matrices is the product of their determinants, and the determinant of a triangular matrix is the product of its diagonal entries. The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variation Of Parameters
In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous differential equation, inhomogeneous linear ordinary differential equations. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or method of undetermined coefficients, undetermined coefficients with considerably less effort, although those methods leverage heuristics that involve guessing and do not work for all inhomogeneous linear differential equations. Variation of parameters extends to linear partial differential equations as well, specifically to inhomogeneous problems for linear evolution equations like the heat equation, wave equation, and vibrating plate equation. In this setting, the method is more often known as Duhamel's principle, named after Jean-Marie Duhamel (1797–1872) who first applied the method to solve the inhomogeneous heat equation. Sometimes variation of parame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Józef Maria Hoene-Wroński
Józef Maria Hoene-Wroński (; ; ; 23 August 1776 – 9 August 1853) was a Polish messianist philosopher, mathematician, physicist, inventor, lawyer, occultist and economist. In mathematics, he is known for introducing a novel series expansion for a function in response to Joseph Louis Lagrange's use of infinite series. The coefficients in Wroński's new series form the Wronskian, a determinant Thomas Muir named in 1882. As an inventor, he is credited with designing some of the first caterpillar vehicles. Life and work He was born as ''Hoëné'' in 1776 but changed his name in 1815 to Józef Wroński. Later in life he changed his name to Józef Maria Hoene-Wroński, without using his family's original French spelling Hoëné. At no point in his life, neither in Polish or French, was he known as Hoëné-Wroński; nor was the common French transliteration, Josef Hoëné-Wronski, ever his official name in his native Poland (though it might have served as his chosen French ''nom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moore Matrix
In linear algebra, a Moore matrix, introduced by , is a matrix defined over a finite field. When it is a square matrix its determinant is called a Moore determinant (this is unrelated to the Moore determinant of a quaternionic Hermitian matrix). The Moore matrix has successive powers of the Frobenius automorphism applied to its columns (beginning with the zeroth power of the Frobenius automorphism in the first column), so it is an ''m'' × ''n'' matrix M=\begin \alpha_1 & \alpha_1^q & \dots & \alpha_1^\\ \alpha_2 & \alpha_2^q & \dots & \alpha_2^\\ \alpha_3 & \alpha_3^q & \dots & \alpha_3^\\ \vdots & \vdots & \ddots &\vdots \\ \alpha_m & \alpha_m^q & \dots & \alpha_m^\\ \end or M_ = \alpha_i^ for all indices ''i'' and ''j''. (Some authors use the transpose of the above matrix.) The Moore determinant of a square Moore matrix (so ''m'' = ''n'') can be expressed as: \det(V) = \prod_ \left( c_1\alpha_1 + \cdots + c_n\alpha_n \right), where c runs over a complete set of direction vect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternant Matrix
In linear algebra, an alternant matrix is a matrix formed by applying a finite list of functions pointwise to a fixed column of inputs. An alternant determinant is the determinant of a square alternant matrix. Generally, if f_1, f_2, \dots, f_n are functions from a set X to a field F, and \in X, then the alternant matrix has size m \times n and is defined by :M=\begin f_1(\alpha_1) & f_2(\alpha_1) & \cdots & f_n(\alpha_1)\\ f_1(\alpha_2) & f_2(\alpha_2) & \cdots & f_n(\alpha_2)\\ f_1(\alpha_3) & f_2(\alpha_3) & \cdots & f_n(\alpha_3)\\ \vdots & \vdots & \ddots &\vdots \\ f_1(\alpha_m) & f_2(\alpha_m) & \cdots & f_n(\alpha_m)\\ \end or, more compactly, M_ = f_j(\alpha_i). (Some authors use the transpose of the above matrix.) Examples of alternant matrices include Vandermonde matrices, for which f_j(\alpha)=\alpha^, and Moore matrices, for which f_j(\alpha)=\alpha^. Properties * The alternant can be used to check the linear independence of the functions f_1, f_2, \dots, f_n in f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vandermonde Matrix
In linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row: an (m + 1) \times (n + 1) matrix :V = V(x_0, x_1, \cdots, x_m) = \begin 1 & x_0 & x_0^2 & \dots & x_0^n\\ 1 & x_1 & x_1^2 & \dots & x_1^n\\ 1 & x_2 & x_2^2 & \dots & x_2^n\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & x_m & x_m^2 & \dots & x_m^n \end with entries V_ = x_i^j , the ''j''th power of the number x_i, for all zero-based indices i and j . Some authors define the Vandermonde matrix as the transpose of the above matrix. The determinant of a square Vandermonde matrix (when n=m) is called a Vandermonde determinant or Vandermonde polynomial. Its value is: :\det(V) = \prod_ (x_j - x_i). This is non-zero if and only if all x_i are distinct (no two are equal), making the Vandermonde matrix invertible. Applications The polynomial interpolation problem is to find a polynomial p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frobenius Endomorphism
In commutative algebra and field theory (mathematics), field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative Ring (mathematics), rings with prime number, prime characteristic (algebra), characteristic , an important class that includes finite fields. The endomorphism maps every element to its -th power. In certain contexts it is an automorphism, but this is not true in general. Definition Let be a commutative ring with prime characteristic (an integral domain of positive characteristic always has prime characteristic, for example). The Frobenius endomorphism ''F'' is defined by :F(r) = r^p for all ''r'' in ''R''. It respects the multiplication of ''R'': :F(rs) = (rs)^p = r^ps^p = F(r)F(s), and is 1 as well. Moreover, it also respects the addition of . The expression can be expanded using the binomial theorem. Because is prime, it divides but not any for ; it therefore will divide the numerator, but not the d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Princeton University
Princeton University is a private university, private Ivy League research university in Princeton, New Jersey, United States. Founded in 1746 in Elizabeth, New Jersey, Elizabeth as the College of New Jersey, Princeton is the List of Colonial Colleges, fourth-oldest institution of higher education in the United States and one of the nine colonial colleges chartered before the American Revolution. The institution moved to Newark, New Jersey, Newark in 1747 and then to its Mercer County, New Jersey, Mercer County campus in Princeton nine years later. It officially became a university in 1896 and was subsequently renamed Princeton University. The university is governed by the Trustees of Princeton University and has an endowment of $37.7 billion, the largest List of colleges and universities in the United States by endowment, endowment per student in the United States. Princeton provides undergraduate education, undergraduate and graduate education, graduate instruction in the hu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Thue–Siegel–Roth Theorem
In mathematics, Roth's theorem or Thue–Siegel–Roth theorem is a fundamental result in diophantine approximation to algebraic numbers. It is of a qualitative type, stating that algebraic numbers cannot have many rational approximations that are 'very good'. Over half a century, the meaning of ''very good'' here was refined by a number of mathematicians, starting with Joseph Liouville in 1844 and continuing with work of , , , and . Statement Roth's theorem states that every irrational algebraic number \alpha has approximation exponent equal to 2. This means that, for every \varepsilon>0, the inequality :\left, \alpha - \frac\ \frac with C(\alpha,\varepsilon) a positive number depending only on \varepsilon>0 and \alpha. Discussion The first result in this direction is Liouville's theorem on approximation of algebraic numbers, which gives an approximation exponent of ''d'' for an algebraic number α of degree ''d'' ≥ 2. This is already enough to demonstrate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]