HOME





Wielandt Theorem
In mathematics, the Wielandt theorem characterizes the gamma function, defined for all complex numbers z for which \mathrm\,z > 0 by :\Gamma(z)=\int_0^ t^ \mathrm e^\,\mathrm dt, as the only function f defined on the half-plane H := \ such that: * f is holomorphic on H; * f(1)=1; * f(z+1)=z\,f(z) for all z \in H and * f is bounded on the strip \. This theorem is named after the mathematician Helmut Wielandt. See also * Bohr–Mollerup theorem * Hadamard's gamma function References * {{cite journal, author=Reinhold Remmert, title=Wielandt's theorem about the {{math, Γ-function, journal=American Mathematical Monthly ''The American Mathematical Monthly'' is a peer-reviewed scientific journal of mathematics. It was established by Benjamin Finkel in 1894 and is published by Taylor & Francis on behalf of the Mathematical Association of America. It is an exposi ..., volume=103, year=1996, pages=214–220, jstor=2975370. Gamma and related functions Theorems in complex ana ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characterization (mathematics)
In mathematics, a characterization of an object is a set of conditions that, while possibly different from the definition of the object, is logically equivalent to it. To say that "Property ''P'' characterizes object ''X''" is to say that not only does ''X'' have property ''P'', but that ''X'' is the ''only'' thing that has property ''P'' (i.e., ''P'' is a defining property of ''X''). Similarly, a set of properties ''P'' is said to characterize ''X'', when these properties distinguish ''X'' from all other objects. Even though a characterization identifies an object in a unique way, several characterizations can exist for a single object. Common mathematical expressions for a characterization of ''X'' in terms of ''P'' include "''P'' is necessary and sufficient for ''X''", and "''X'' holds if and only if ''P''". It is also common to find statements such as "Property ''Q'' characterizes ''Y'' up to isomorphism". The first type of statement says in different words that the extension o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holomorphic Function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: It implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (is '' analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term '' analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Function
In mathematics, a function f defined on some set X with real or complex values is called bounded if the set of its values (its image) is bounded. In other words, there exists a real number M such that :, f(x), \le M for all x in X. A function that is ''not'' bounded is said to be unbounded. If f is real-valued and f(x) \leq A for all x in X, then the function is said to be bounded (from) above by A. If f(x) \geq B for all x in X, then the function is said to be bounded (from) below by B. A real-valued function is bounded if and only if it is bounded from above and below. An important special case is a bounded sequence, where ''X'' is taken to be the set \mathbb N of natural numbers. Thus a sequence f = (a_0, a_1, a_2, \ldots) is bounded if there exists a real number M such that :, a_n, \le M for every natural number n. The set of all bounded sequences forms the sequence space l^\infty. The definition of boundedness can be generalized to functions f: X \rightarrow Y taking ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Helmut Wielandt
__NOTOC__ Helmut Wielandt (19 December 1910 – 14 February 2001) was a German mathematician who worked on permutation groups. He was born in Niedereggenen, Lörrach, Germany. He gave a plenary lecture ''Entwicklungslinien in der Strukturtheorie der endlichen Gruppen'' (Lines of Development in the Structure Theory of Finite Groups) at the International Congress of Mathematicians (ICM) in 1958 at Edinburgh and was an Invited Speaker with talk ''Bedingungen für die Konjugiertheit von Untergruppen endlicher Gruppen'' (Conditions for the Conjugacy of Finite Groups) at the ICM in 1962 in Stockholm. Among his work in Algebra is an elegant proof of the Sylow Theorems (replacing an older cumbersome proof involving double cosets) that is in the standard textbooks on Abstract Algebra, i.e. Group Theory. See also * Collatz–Wielandt formula * Wielandt theorem In mathematics, the Wielandt theorem characterizes the gamma function, defined for all complex numbers z for which \mathrm\,z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bohr–Mollerup Theorem
In mathematical analysis, the Bohr–Mollerup theorem is a theorem proved by the Danish mathematicians Harald Bohr and Johannes Mollerup. The theorem characterizes the gamma function, defined for by :\Gamma(x)=\int_0^\infty t^ e^\,\mathrmt as the ''only'' positive function , with domain on the interval , that simultaneously has the following three properties: * , and * for and * is logarithmically convex. A treatment of this theorem is in Artin's book ''The Gamma Function'', which has been reprinted by the AMS in a collection of Artin's writings. The theorem was first published in a textbook on complex analysis, as Bohr and Mollerup thought it had already been proved. The theorem admits a far-reaching generalization to a wide variety of functions (that have convexity or concavity properties of any order). Statement :Bohr–Mollerup Theorem.     is the only function that satisfies with convex and also with . Proof Let be a function with the assumed proper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hadamard's Gamma Function
In mathematics, Hadamard's gamma function, named after Jacques Hadamard, is an extension of the factorial function, different from the classical gamma function (it is an instance of a pseudogamma function). This function, with its argument shifted down by 1, interpolates the factorial and extends it to real and complex numbers in a different way from Euler's gamma function. It is defined as: :H(x) = \frac\,\dfrac \left \, where denotes the classical gamma function. If is a positive integer, then: :H(n) = \Gamma(n) = (n-1)! Properties Unlike the classical gamma function, Hadamard's gamma function is an entire function, i.e., it is defined and analytic at all complex numbers. It satisfies the functional equation :H(x+1) = xH(x) + \frac, with the understanding that \tfrac is taken to be for positive integer values of . Representations Hadamard's gamma can also be expressed as :H(x)=\frac = \frac, and also as :H(x) = \Gamma(x) \left 1 + \frac \left \ \right w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reinhold Remmert
Reinhold Remmert (22 June 1930 – 9 March 2016) was a German mathematician. Born in Osnabrück, Lower Saxony, he studied mathematics, mathematical logic and physics in Münster. He established and developed the theory of complex-analytic spaces in joint work with Hans Grauert. Until his retirement in 1995, he was a professor for complex analysis in Münster. Remmert wrote two books on number theory and complex analysis, which contain a huge amount of historical information together with references on important papers in the subject. See also * Remmert–Stein theorem Important publications * * References * Short biographyhosted at University of Münster The University of Münster (, until 2023 , WWU) is a public research university located in the city of Münster, North Rhine-Westphalia in Germany. With more than 43,000 students and over 120 fields of study in 15 departments, it is Germany's ... List of doctoral students 20th-century German mathematician ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




The American Mathematical Monthly
''The American Mathematical Monthly'' is a peer-reviewed scientific journal of mathematics. It was established by Benjamin Finkel in 1894 and is published by Taylor & Francis on behalf of the Mathematical Association of America. It is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. The editor-in-chief is Vadim Ponomarenko (San Diego State University). The journal gives the Lester R. Ford Award annually to "authors of articles of expository excellence" published in the journal. Editors-in-chief The following persons are or have been editor-in-chief: See also *''Mathematics Magazine'' *''Notices of the American Mathematical Society ''Notices of the American Mathematical Society'' is the membership journal of the American Mathematical Society (AMS), published monthly except f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma And Related Functions
Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally represents a voiced velar fricative , except before either of the two front vowels (/e/, /i/), where it represents a voiced palatal fricative ; while /g/ in foreign words is instead commonly transcribed as γκ). In the International Phonetic Alphabet and other modern Latin-alphabet based phonetic notations, it represents the voiced velar fricative. History The Greek letter Gamma Γ is a grapheme derived from the Phoenician letter (''gīml'') which was rotated from the right-to-left script of Canaanite to accommodate the Greek language's writing system of left-to-right. The Canaanite grapheme represented the /g/ phoneme in the Canaanite language, and as such is cognate with ''gimel'' ג of the Hebrew alphabet. Based on its name, the l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]