HOME





Wheel Graph
In graph theory, a wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. A wheel graph with vertices can also be defined as the 1-skeleton of an pyramid. Some authors write to denote a wheel graph with vertices (); other authors instead use to denote a wheel graph with vertices (), which is formed by connecting a single vertex to all vertices of a cycle of length . The former notation is used in the rest of this article and in the table on the right. Edge Set would be the edge set of a wheel graph with vertex set in which the vertex 1 is a universal vertex. Properties Wheel graphs are planar graphs, and have a unique planar embedding. More specifically, every wheel graph is a Halin graph. They are self-dual: the planar dual of any wheel graph is an isomorphic graph. Every maximal planar graph, other than ''K''4 = ''W''4, contains as a subgraph either ''W''5 or ''W''6. There is always a Hamiltonian cycle in the wheel graph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wheel Graphs
A wheel is a rotating component (typically circular in shape) that is intended to turn on an axle bearing. The wheel is one of the key components of the wheel and axle which is one of the six simple machines. Wheels, in conjunction with axles, allow heavy objects to be moved easily facilitating movement or transportation while supporting a load, or performing labor in machines. Wheels are also used for other purposes, such as a ship's wheel, steering wheel, potter's wheel, and flywheel. Common examples can be found in transport applications. A wheel reduces friction by facilitating motion by rolling together with the use of axles. In order for a wheel to rotate, a moment must be applied to the wheel about its axis, either by gravity or by the application of another external force or torque. Terminology The English word ''wheel'' comes from the Old English word , from Proto-Germanic , from Proto-Indo-European , an extended form of the root . Cognates within Indo-European in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perfect Graph
In graph theory, a perfect graph is a Graph (discrete mathematics), graph in which the Graph coloring, chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices. The perfect graphs include many important families of graphs and serve to unify results relating Graph coloring, colorings and cliques in those families. For instance, in all perfect graphs, the graph coloring problem, maximum clique problem, and maximum independent set problem can all be solved in polynomial time, despite their greater complexity for non-perfect graphs. In addition, several important minimax theorems in combinatorics, including Dilworth's theorem and Mirsky's theorem on partially ordered sets, Kőnig's theorem (gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paley Graph
In mathematics, Paley graphs are undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, which yield an infinite family of symmetric conference matrix, conference matrices. Paley graphs allow graph-theoretic tools to be applied to the number theory of quadratic residues, and have interesting properties that make them useful in graph theory more generally. Paley graphs are named after Raymond Paley. They are closely related to the Paley construction for constructing Hadamard matrix, Hadamard matrices from quadratic residues. They were introduced as graphs independently by and . Horst Sachs, Sachs was interested in them for their self-complementarity properties, while Paul Erdős, Erdős and Alfréd Rényi, Rényi studied their symmetries. Paley digraphs are directed graph, directed analogs of Paley graphs that yield antisymmetric conf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramsey Theory
Ramsey theory, named after the British mathematician and philosopher Frank P. Ramsey, is a branch of the mathematical field of combinatorics that focuses on the appearance of order in a substructure given a structure of a known size. Problems in Ramsey theory typically ask a question of the form: "how big must some structure be to guarantee that a particular property holds?" Examples A typical result in Ramsey theory starts with some mathematical structure that is then cut into pieces. How big must the original structure be in order to ensure that at least one of the pieces has a given interesting property? This idea can be defined as partition regularity. For example, consider a complete graph of order ''n''; that is, there are ''n'' vertices and each vertex is connected to every other vertex by an edge. A complete graph of order 3 is called a triangle. Now colour each edge either red or blue. How large must ''n'' be in order to ensure that there is either a blue triangle or a re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Erdős
Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered on discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He was known both for his social practice of mathematics, working with more than 500 collaborators, and for his eccentric lifestyle; ''Time'' magazine called him "The Oddball's Oddba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spanning Tree
In the mathematical field of graph theory, a spanning tree ''T'' of an undirected graph ''G'' is a subgraph that is a tree which includes all of the vertices of ''G''. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see about spanning forests below). If all of the edges of ''G'' are also edges of a spanning tree ''T'' of ''G'', then ''G'' is a tree and is identical to ''T'' (that is, a tree has a unique spanning tree and it is itself). Applications Several pathfinding algorithms, including Dijkstra's algorithm and the A* search algorithm, internally build a spanning tree as an intermediate step in solving the problem. In order to minimize the cost of power networks, wiring connections, piping, automatic speech recognition, etc., people often use algorithms that gradually build a spanning tree (or many such trees) as intermediate steps in the process of finding the minimum spanning tree. The Intern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graphic Matroid
In the mathematical theory of Matroid theory, matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the tree (graph theory), forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs. Definition A matroid may be defined as a family of finite sets (called the "independent sets" of the matroid) that is closed under subsets and that satisfies the "exchange property": if sets A and B are both independent, and A is larger than B, then there is an element x\in A\setminus B such that B\cup\ remains independent. If G is an undirected graph, and F is the family of sets of edges that form forests in G, then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matroid
In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or ''flats''. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terms used in both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory, and coding theory. Definition There are many Cryptomorphism, equivalent ways to define a (finite) matroid. Independent sets In terms of independence, a finite matroid M is a pair (E, \mathcal), where E is a finite set (called the ''gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chromatic Polynomial
The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics. It counts the number of graph colorings as a function of the number of colors and was originally defined by George David Birkhoff to study the four color problem. It was generalised to the Tutte polynomial by Hassler Whitney and W. T. Tutte, linking it to the Potts model of statistical physics. History George David Birkhoff introduced the chromatic polynomial in 1912, defining it only for planar graphs, in an attempt to prove the four color theorem. If P(G, k) denotes the number of proper colorings of ''G'' with ''k'' colors then one could establish the four color theorem by showing P(G, 4)>0 for all planar graphs ''G''. In this way he hoped to apply the powerful tools of analysis and algebra for studying the roots of polynomials to the combinatorial coloring problem. Hassler Whitney generalised Birkhoff’s polynomial from the planar case to general graphs in 1932. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graphs And Combinatorics
''Graphs and Combinatorics'' (ISSN 0911-0119, abbreviated ''Graphs Combin.'') is a peer-reviewed academic journal in graph theory, combinatorics, and discrete geometry published by Springer Japan. Its editor-in-chief is Katsuhiro Ota of Keio University. The journal was first published in 1985. Its founding editor in chief was Hoon Heng Teh of Singapore, the president of the Southeast Asian Mathematics Society, and its managing editor was Jin Akiyama. Originally, it was subtitled "An Asian Journal". In most years since 1999, it has been ranked as a second-quartile journal in discrete mathematics and theoretical computer science by SCImago Journal Rank The SCImago Journal Rank (SJR) indicator is a measure of the prestige of scholarly journals that accounts for both the number of citations received by a journal and the prestige of the journals where the citations come from. Etymology SCImago ..... References {{reflist Academic journals established in 1985 Combinatorics jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Distance Graph
In mathematics, particularly geometric graph theory, a unit distance graph is a Graph (discrete mathematics), graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one. To distinguish these graphs from a broader definition that allows some non-adjacent pairs of vertices to be at distance one, they may also be called strict unit distance graphs or faithful unit distance graphs. As a hereditary property, hereditary family of graphs, they can be characterized by forbidden graph characterization, forbidden induced subgraphs. The unit distance graphs include the cactus graphs, the matchstick graphs and penny graphs, and the hypercube graphs. The generalized Petersen graphs are non-strict unit distance graphs. An unsolved problem of Paul Erdős asks how many edges a unit distance graph on n vertices can have. The best known lower bound is slightly above linear in n—far from the upper bound, proportional t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chromatic Number
In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an '' edge coloring'' assigns a color to each edges so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face (or region) so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]