Voevodsky
Vladimir Alexandrovich Voevodsky (, ; 4 June 1966 – 30 September 2017) was a Russian-American mathematician. His work in developing a homotopy theory for algebraic varieties and formulating motivic cohomology led to the award of a Fields Medal in 2002. He is also known for the proof of the Milnor conjecture and motivic Bloch–Kato conjectures and for the univalent foundations of mathematics and homotopy type theory. Early life and education Vladimir Voevodsky's father, Aleksander Voevodsky, was head of the Laboratory of High Energy Leptons in the Institute for Nuclear Research at the Russian Academy of Sciences. His mother Tatyana was a chemist. Voevodsky attended Moscow State University for a while, but was expelled without a diploma for refusing to attend classes and failing academically. He received his Ph.D. in mathematics from Harvard University in 1992 after being recommended without even applying and without a formal college degree, following several independent pub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homotopy Type Theory
In mathematical logic and computer science, homotopy type theory (HoTT) refers to various lines of development of intuitionistic type theory, based on the interpretation of types as objects to which the intuition of (abstract) homotopy theory applies. This includes, among other lines of work, the construction of homotopical and higher-categorical models for such type theories; the use of type theory as a logic (or internal language) for abstract homotopy theory and higher category theory; the development of mathematics within a type-theoretic foundation (including both previously existing mathematics and new mathematics that homotopical types make possible); and the formalization of each of these in computer proof assistants. There is a large overlap between the work referred to as homotopy type theory, and that called the univalent foundations project. Although neither is precisely delineated, and the terms are sometimes used interchangeably, the choice of usage also s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motivic Cohomology
Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology. Motivic homology and cohomology Let ''X'' be a scheme of finite type over a field ''k''. A key goal of algebraic geometry is to compute the Chow groups of ''X'', because they give strong information about all subvarieties of ''X''. The Chow groups of ''X'' have some of the formal properties of Borel–Moore homology in topology, but some things are missing. For example, for a closed subscheme ''Z'' of ''X'', there is an exact sequence of Chow groups, the localization sequence :CH_i(Z) \rightarrow CH_i(X) \rightarrow CH_i(X-Z) \rightarrow 0, whereas in topology this would be part of a long exact sequence. This problem was resolved by generalizing Chow groups to a bigr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Univalent Foundations
Univalent foundations are an approach to the foundations of mathematics in which mathematical Structuralism (philosophy of mathematics), structures are built out of objects called ''types''. Types in univalent foundations do not correspond exactly to anything in set-theoretic foundations, but they may be thought of as spaces, with equal types corresponding to homotopy equivalent spaces and with equal elements of a type corresponding to points of a space connected by a path. Univalent foundations are inspired both by the old Philosophy of mathematics#Platonism, Platonic ideas of Hermann Grassmann and Georg Cantor and by "category theory, categorical" mathematics in the style of Alexander Grothendieck. Univalent foundations depart from (although are also compatible with) the use of classical predicate logic as the underlying formal Deductive reasoning, deduction system, replacing it, at the moment, with a version of Martin-Löf type theory. The development of univalent foundations is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Milnor's Conjecture
In mathematics, the Milnor conjecture was a proposal by of a description of the Milnor K-theory (mod 2) of a general field ''F'' with characteristic different from 2, by means of the Galois (or equivalently étale) cohomology of ''F'' with coefficients in Z/2Z. It was proved by . Statement Let ''F'' be a field of characteristic different from 2. Then there is an isomorphism :K_n^M(F)/2 \cong H_^n(F, \mathbb/2\mathbb) for all ''n'' ≥ 0, where ''KM'' denotes the Milnor ring. About the proof The proof of this theorem by Vladimir Voevodsky uses several ideas developed by Voevodsky, Alexander Merkurjev, Andrei Suslin, Markus Rost, Fabien Morel, Eric Friedlander, and others, including the newly minted theory of motivic cohomology (a kind of substitute for singular cohomology for algebraic varieties) and the motivic Steenrod algebra. Generalizations The analogue of this result for primes other than 2 was known as the Bloch–Kato conjecture. Work of V ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Milnor Conjecture (K-theory)
In mathematics, the Milnor conjecture was a proposal by of a description of the Milnor K-theory (mod 2) of a general field ''F'' with characteristic different from 2, by means of the Galois (or equivalently étale) cohomology of ''F'' with coefficients in Z/2Z. It was proved by . Statement Let ''F'' be a field of characteristic different from 2. Then there is an isomorphism :K_n^M(F)/2 \cong H_^n(F, \mathbb/2\mathbb) for all ''n'' ≥ 0, where ''KM'' denotes the Milnor ring. About the proof The proof of this theorem by Vladimir Voevodsky uses several ideas developed by Voevodsky, Alexander Merkurjev, Andrei Suslin, Markus Rost, Fabien Morel, Eric Friedlander, and others, including the newly minted theory of motivic cohomology (a kind of substitute for singular cohomology for algebraic varieties) and the motivic Steenrod algebra. Generalizations The analogue of this result for primes other than 2 was known as the Bloch–Kato conjecture. Work ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fields Medal
The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of Mathematicians, International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award honours the Canadian mathematician John Charles Fields. The Fields Medal is regarded as one of the highest honors a mathematician can receive, and has been list of prizes known as the Nobel or the highest honors of a field, described as the Nobel Prize of Mathematics, although there are several major differences, including frequency of award, number of awards, age limits, monetary value, and award criteria. According to the annual Academic Excellence Survey by Academic Ranking of World Universities, ARWU, the Fields Medal is consistently regarded as the top award in the field of mathematics worldwide, and in another reputation survey conducted by IREG Observatory on Academic Ranking and Excellence, IR ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fabien Morel
Fabien Morel (born 22 January 1965, in Reims) is a French algebraic geometer and key developer of A¹ homotopy theory with Vladimir Voevodsky. Among his accomplishments is the proof of the Friedlander conjecture, and the proof of the complex case of the Milnor conjecture stated in Milnor's 1983 paper 'On the homology of Lie groups made discrete'. This result was presented at the Second Abel Conference, held in January–February 2012. In 2006, he was an invited speaker with a talk on ''A1-algebraic topology'' at the International Congress of Mathematicians in Madrid. Selected publications ''A1-algebraic topology over a field.''(= Lecture Notes in Mathematics. 2052). Springer, 2012, . * with Marc Levine''Algebraic Cobordism.''Springer, 2007, . ''Homotopy theory of Schemes.''American Mathematical Society, 2006 (French original published by Société Mathématique de France Groupe Lactalis S.A. (doing business as Lactalis) is a French multinational dairy products corporatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
David Kazhdan
David Kazhdan (), born Dmitry Aleksandrovich Kazhdan (), is a Soviet and Israeli mathematician known for work in representation theory. Kazhdan is a 1990 MacArthur Fellow. Biography Kazhdan was born on 20 June 1946 in Moscow, USSR. His father is Alexander Kazhdan. He earned a doctorate under Alexandre Kirillov in 1969 and was a member of Israel Gelfand's school of mathematics. He is Jewish, and emigrated from the Soviet Union to take a position at Harvard University in 1975. He changed his name from Dmitri Aleksandrovich to David and became an Orthodox Jew around that time. In 2002, he immigrated to Israel and is now a professor at the Hebrew University of Jerusalem as well as a professor emeritus at Harvard. On October 6, 2013, Kazhdan was critically injured in a car accident while riding a bicycle in Jerusalem. Kazhdan has four children. His son, Eli Kazhdan, was general director of Natan Sharansky's Yisrael BaAliyah political party (now merged with Likud). Researc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Institute For Advanced Study
The Institute for Advanced Study (IAS) is an independent center for theoretical research and intellectual inquiry located in Princeton, New Jersey. It has served as the academic home of internationally preeminent scholars, including Albert Einstein, J. Robert Oppenheimer, Emmy Noether, Hermann Weyl, John von Neumann, Michael Walzer, Clifford Geertz and Kurt Gödel, many of whom had emigrated from Europe to the United States. It was founded in 1930 by American educator Abraham Flexner, together with philanthropists Louis Bamberger and Caroline Bamberger Fuld. Despite collaborative ties and neighboring geographic location, the institute, being independent, has "no formal links" with Princeton University. The institute does not charge tuition or fees. Flexner's guiding principle in founding the institute was the pursuit of knowledge for its own sake.Jogalekar. The faculty have no classes to teach. There are no degree programs or experimental facilities at the institute. Research ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander Grothendieck
Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 – 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called Grothendieck's relative point of view, "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century. Grothendieck began his productive and public career as a mathematician in 1949. In 1958, he was appointed a research professor at the Institut des Hautes Études Scientifiques, Institut des hautes études scientifiques (IHÉS) and remained there until 1970, when, driven by personal and political convictions, he left following a dispute over military funding. He receive ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Doctor Of Philosophy
A Doctor of Philosophy (PhD, DPhil; or ) is a terminal degree that usually denotes the highest level of academic achievement in a given discipline and is awarded following a course of Postgraduate education, graduate study and original research. The name of the degree is most often abbreviated PhD (or, at times, as Ph.D. in North American English, North America), pronounced as three separate letters ( ). The University of Oxford uses the alternative abbreviation "DPhil". PhDs are awarded for programs across the whole breadth of academic fields. Since it is an earned research degree, those studying for a PhD are required to produce original research that expands the boundaries of knowledge, normally in the form of a Thesis, dissertation, and, in some cases, defend their work before a panel of other experts in the field. In many fields, the completion of a PhD is typically required for employment as a university professor, researcher, or scientist. Definition In the context o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |