HOME
*





Victor Bangert
Victor Bangert (born 28 November 1950) is Professor of Mathematics at the Mathematisches Institut in Freiburg, Germany. His main interests are differential geometry and dynamical systems theory. He specialises in the theory of closed geodesics, wherein one of his significant results, combined with another one due tJohn Franks implies that every Riemannian 2-sphere possesses infinitely many closed geodesics. He also made important contributions to Aubry–Mather theory. He obtained his Ph.D. from Universität Dortmund in 1977 under the supervision of Rolf Wilhelm Walter, with the thesis ''Konvexität in riemannschen Mannigfaltigkeiten''. He served in the editorial board ofmanuscripta mathematica from 1996 to 2017. Bangert was an invited speaker at the 1994 International Congress of Mathematicians in Zürich , neighboring_municipalities = Adliswil, Dübendorf, Fällanden, Kilchberg, Maur, Oberengstringen, Opfikon, Regensdorf, Rümlang, Schlieren, Stallikon, Uitikon, U ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oberwolfach
Oberwolfach ( gsw, label= Low Alemannic, Obberwolfä) is a town in the district of Ortenau in Baden-Württemberg, Germany. It is the site of the Oberwolfach Research Institute for Mathematics, or Mathematisches Forschungsinstitut Oberwolfach. Geography Geographical situation The town of Oberwolfach lies between 270 and 948 meters above sea level in the central Schwarzwald (Black Forest) on the river Wolf, a tributary of the Kinzig. Neighbouring localities The district is neighboured by Bad Peterstal-Griesbach to the north, Bad Rippoldsau-Schapbach in Landkreis Freudenstadt to the east, by the towns of Wolfach and Hausach to the south, and by Oberharmersbach Oberharmersbach ( gsw, label=Low Alemannic Low Alemannic German (german: Niederalemannisch) is a branch of Alemannic German, which is part of Upper German. Its varieties are only partly intelligible to non-Alemannic speakers. Subdivisions * ... to the west. References External links Gemeinde Oberwol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rolf Wilhelm Walter
Rolf is a male given name and a surname. It originates in the Germanic name ''Hrolf'', itself a contraction of ''Hrodwulf'' ( Rudolf), a conjunction of the stem words ''hrod'' ("renown") + ''wulf'' ("wolf"). The Old Norse cognate is ''Hrólfr''. An alternative but less common variation of ''Rolf'' in Norway is ''Rolv''. The oldest evidence of the use of the name Rolf in Sweden is an inscription from the 11th century on a runestone in Forsheda, Småland. The name also appears twice in the Orkneyinga sagas, where a scion of the jarls of Orkney, Gånge-Rolf, is said to be identical to the Viking Rollo who captured Normandy in 911. This Saga of the Norse begins with the abduction of Gói daughter by a certain Hrolf of Berg, (the Mountain). She is the daughter of Thorri, a Jotun of Gandvik, and sister of Gór and Nór. The latter is regarded as a first king and eponymous anchestor of Nórway. After a fierce duell (Holmgang) where none is able to overcome the other, Hrolf and Nór beco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometers
A geometer is a mathematician whose area of study is geometry. Some notable geometers and their main fields of work, chronologically listed, are: 1000 BCE to 1 BCE * Baudhayana (fl. c. 800 BC) – Euclidean geometry, geometric algebra * Manava (c. 750 BC–690 BC) – Euclidean geometry * Thales of Miletus (c. 624 BC – c. 546 BC) – Euclidean geometry * Pythagoras (c. 570 BC – c. 495 BC) – Euclidean geometry, Pythagorean theorem * Zeno of Elea (c. 490 BC – c. 430 BC) – Euclidean geometry * Hippocrates of Chios (born c. 470 – 410 BC) – first systematically organized '' Stoicheia – Elements'' (geometry textbook) * Mozi (c. 468 BC – c. 391 BC) * Plato (427–347 BC) * Theaetetus (c. 417 BC – 369 BC) * Autolycus of Pitane (360–c. 290 BC) – astronomy, spherical geometry * Euclid (fl. 300 BC) – ''Elements'', Euclidean geometry (sometimes called the "father of geometry") * Apollonius of Perga (c. 262 BC – c. 190 BC) – Euclidean geometry, conic s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Living People
Related categories * :Year of birth missing (living people) / :Year of birth unknown * :Date of birth missing (living people) / :Date of birth unknown * :Place of birth missing (living people) / :Place of birth unknown * :Year of death missing / :Year of death unknown * :Date of death missing / :Date of death unknown * :Place of death missing / :Place of death unknown * :Missing middle or first names See also * :Dead people * :Template:L, which generates this category or death years, and birth year and sort keys. : {{DEFAULTSORT:Living people 21st-century people People by status ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




1950 Births
Year 195 ( CXCV) was a common year starting on Wednesday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Scrapula and Clemens (or, less frequently, year 948 '' Ab urbe condita''). The denomination 195 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years. Events By place Roman Empire * Emperor Septimius Severus has the Roman Senate deify the previous emperor Commodus, in an attempt to gain favor with the family of Marcus Aurelius. * King Vologases V and other eastern princes support the claims of Pescennius Niger. The Roman province of Mesopotamia rises in revolt with Parthian support. Severus marches to Mesopotamia to battle the Parthians. * The Roman province of Syria is divided and the role of Antioch is diminished. The Romans annexed the Syrian cities of Edessa and Nisibis. Severus re-establish ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

21st-century German Mathematicians
The 1st century was the century spanning AD 1 (Roman numerals, I) through AD 100 (Roman numerals, C) according to the Julian calendar. It is often written as the or to distinguish it from the 1st century BC (or BCE) which preceded it. The 1st century is considered part of the Classical era, epoch, or History by period, historical period. The 1st century also saw the Christianity in the 1st century, appearance of Christianity. During this period, Europe, North Africa and the Near East fell under increasing domination by the Roman Empire, which continued expanding, most notably conquering Britain under the emperor Claudius (AD 43). The reforms introduced by Augustus during his long reign stabilized the empire after the turmoil of the previous century's civil wars. Later in the century the Julio-Claudian dynasty, which had been founded by Augustus, came to an end with the suicide of Nero in AD 68. There followed the famous Year of Four Emperors, a brief period of civil war and inst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zürich
, neighboring_municipalities = Adliswil, Dübendorf, Fällanden, Kilchberg, Maur, Oberengstringen, Opfikon, Regensdorf, Rümlang, Schlieren, Stallikon, Uitikon, Urdorf, Wallisellen, Zollikon , twintowns = Kunming, San Francisco Zürich () is the largest city in Switzerland and the capital of the canton of Zürich. It is located in north-central Switzerland, at the northwestern tip of Lake Zürich. As of January 2020, the municipality has 434,335 inhabitants, the urban area 1.315 million (2009), and the Zürich metropolitan area 1.83 million (2011). Zürich is a hub for railways, roads, and air traffic. Both Zurich Airport and Zürich's main railway station are the largest and busiest in the country. Permanently settled for over 2,000 years, Zürich was founded by the Romans, who called it '. However, early settlements have been found dating back more than 6,400 years (although this only indicates human presence in the area and not the presence of a town that early). During ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of International Congresses Of Mathematicians Plenary And Invited Speakers
This is a list of International Congresses of Mathematicians Plenary and Invited Speakers. Being invited to talk at an International Congress of Mathematicians has been called "the equivalent, in this community, of an induction to a hall of fame." The current list of Plenary and Invited Speakers presented here is based on the ICM's post-WW II terminology, in which the one-hour speakers in the morning sessions are called "Plenary Speakers" and the other speakers (in the afternoon sessions) whose talks are included in the ICM published proceedings are called "Invited Speakers". In the pre-WW II congresses the Plenary Speakers were called "Invited Speakers". By congress year 1897, Zürich * Jules Andrade * Léon Autonne *Émile Borel * N. V. Bougaïev *Francesco Brioschi *Hermann Brunn *Cesare Burali-Forti *Charles Jean de la Vallée Poussin *Gustaf Eneström *Federigo Enriques *Gino Fano * Zoel García de Galdeano * Francesco Gerbaldi *Paul Gordan *Jacques Hadamard * Adolf Hurwitz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doctor Of Philosophy
A Doctor of Philosophy (PhD, Ph.D., or DPhil; Latin: or ') is the most common degree at the highest academic level awarded following a course of study. PhDs are awarded for programs across the whole breadth of academic fields. Because it is an earned research degree, those studying for a PhD are required to produce original research that expands the boundaries of knowledge, normally in the form of a dissertation, and defend their work before a panel of other experts in the field. The completion of a PhD is often a requirement for employment as a university professor, researcher, or scientist in many fields. Individuals who have earned a Doctor of Philosophy degree may, in many jurisdictions, use the title '' Doctor'' (often abbreviated "Dr" or "Dr.") with their name, although the proper etiquette associated with this usage may also be subject to the professional ethics of their own scholarly field, culture, or society. Those who teach at universities or work in academic, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]