HOME
*



picture info

Vecten Points
In the geometry of triangles, the Vecten points are two triangle centers associated with any triangle. They may be constructed by constructing three squares on the sides of the triangle, connecting each square centre by a line to the opposite triangle point, and finding the point where these three lines meet. The outer and inner Vecten points differ according to whether the squares are extended outward from the triangle sides, or inward. The Vecten points are named after an early 19th-century French mathematician named Vecten, who taught mathematics with Gergonne in Nîmes and published a study of the figure of three squares on the sides of a triangle in 1817.. Outer Vecten point Let ABC be any given plane triangle. On the sides BC, CA, AB of the triangle, construct outwardly drawn three squares with centres O_a,O_b,O_c respectively. Then the lines AO_a, BO_b and CO_c are concurrent. The point of concurrence is the outer Vecten point of the triangle ABC. In Clark Kimberling's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- collinear, determine a unique triangle and simultaneously, a unique plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of Euclid's Elements. The names used for modern classification a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle Center
In geometry, a triangle center (or triangle centre) is a point in the plane that is in some sense a center of a triangle akin to the centers of squares and circles, that is, a point that is in the middle of the figure by some measure. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions. Each of these classical centers has the property that it is invariant (more precisely equivariant) under similarity transformations. In other words, for any triangle and any similarity transformation (such as a rotation, reflection, dilation, or translation), the center of the transformed triangle is the same point as the transformed center of the original triangle. This invariance is the defining property of a triangle center. It rules out other well-known points such as the Brocard points which are not invariant under reflection and so fail to qualify as triangle centers. For an equilateral ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joseph Diaz Gergonne
Joseph Diez Gergonne (19 June 1771 at Nancy, France – 4 May 1859 at Montpellier, France) was a French mathematician and logician. Life In 1791, Gergonne enlisted in the French army as a captain. That army was undergoing rapid expansion because the French government feared a foreign invasion intended to undo the French Revolution and restore Louis XVI to the throne of France. He saw action in the major battle of Valmy on 20 September 1792. He then returned to civilian life but soon was called up again and took part in the French invasion of Spain in 1794. In 1795, Gergonne and his regiment were sent to Nîmes. At this point, he made a definitive transition to civilian life by taking up the chair of "transcendental mathematics" at the new École centrale. He came under the influence of Gaspard Monge, the Director of the new École polytechnique in Paris. In 1810, in response to difficulties he encountered in trying to publish his work, Gergonne founded his own mathematics jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nîmes
Nîmes ( , ; oc, Nimes ; Latin: ''Nemausus'') is the prefecture of the Gard department in the Occitanie region of Southern France. Located between the Mediterranean Sea and Cévennes, the commune of Nîmes has an estimated population of 148,561 (2019). Dubbed the most Roman city outside Italy, Nîmes has a rich history dating back to the Roman Empire when the city had a population of 50,000–60,000 and was the regional capital. Several famous monuments are in Nîmes, such as the Arena of Nîmes and the Maison Carrée. Because of this, Nîmes is often referred to as the "French Rome". Origins Nimes is situated where the alluvial plain of the Vistrenque River abuts the hills of Mont Duplan to the northeast, Montaury to the southwest, and to the west Mt. Cavalier and the knoll of Canteduc. Its name appears in inscriptions in Gaulish as ''dede matrebo Namausikabo'' ("he has given to the mothers of Nîmes") and "''toutios Namausatis''" ("citizen of Nîmes"). Nemausus w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plane (geometry)
In mathematics, a plane is a Euclidean ( flat), two- dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as subspaces of some higher-dimensional space, as with one of a room's walls, infinitely extended, or they may enjoy an independent existence in their own right, as in the setting of two-dimensional Euclidean geometry. Sometimes the word ''plane'' is used more generally to describe a two-dimensional surface, for example the hyperbolic plane and elliptic plane. When working exclusively in two-dimensional Euclidean space, the definite article is used, so ''the'' plane refers to the whole space. Many fundamental tasks in mathematics, geometry, trigonometry, graph theory, and graphing are performed in a two-dimensional space, often in the plane. Euclidean geometry Euclid set forth the first great landmark of mathematical thought, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clark Kimberling
Clark Kimberling (born November 7, 1942 in Hinsdale, Illinois) is a mathematician, musician, and composer. He has been a mathematics professor since 1970 at the University of Evansville. His research interests include triangle centers, integer sequences, and hymnology. Kimberling received his PhD in mathematics in 1970 from the Illinois Institute of Technology, under the supervision of Abe Sklar. Since at least 1994, he has maintained a list of triangle centers and their properties. In its current on-line form, the Encyclopedia of Triangle Centers, this list comprises tens of thousands of entries. He has contributed to ''The Hymn'', the journal of the Hymn Society in the United States and Canada; and in the ''Canterbury Dictionary of Hymnology''. Kimberling's golden triangle Robert C. Schoen has defined a "golden triangle" as a triangle with two of its sides in the golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Encyclopedia Of Triangle Centers
The Encyclopedia of Triangle Centers (ETC) is an online list of thousands of points or " centers" associated with the geometry of a triangle. It is maintained by Clark Kimberling, Professor of Mathematics at the University of Evansville. , the list identifies 52,440 triangle centers. Each point in the list is identified by an index number of the form ''X''(''n'')—for example, ''X''(1) is the incenter. The information recorded about each point includes its trilinear and barycentric coordinates and its relation to lines joining other identified points. Links to The Geometer's Sketchpad diagrams are provided for key points. The Encyclopedia also includes a glossary of terms and definitions. Each point in the list is assigned a unique name. In cases where no particular name arises from geometrical or historical considerations, the name of a star is used instead. For example, the 770th point in the list is named ''point Acamar''. The first 10 points listed in the Encyclopedi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Euler Line
In geometry, the Euler line, named after Leonhard Euler (), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle. The concept of a triangle's Euler line extends to the Euler line of other shapes, such as the quadrilateral and the tetrahedron. Triangle centers on the Euler line Individual centers Euler showed in 1765 that in any triangle, the orthocenter, circumcenter and centroid are collinear. This property is also true for another triangle center, the nine-point center, although it had not been defined in Euler's time. In equilateral triangles, these four points coincide, but in any other triangle they are all distinct from each other, and the Euler line is determined by any two of them. Other notable points that li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nine-point Circle
In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are: * The midpoint of each side of the triangle * The foot of each altitude * The midpoint of the line segment from each vertex of the triangle to the orthocenter (where the three altitudes meet; these line segments lie on their respective altitudes). The nine-point circle is also known as Feuerbach's circle (after Karl Wilhelm Feuerbach), Euler's circle (after Leonhard Euler), Terquem's circle (after Olry Terquem), the six-points circle, the twelve-points circle, the -point circle, the medioscribed circle, the mid circle or the circum-midcircle. Its center is the nine-point center of the triangle. Nine significant points The diagram above shows the nine significant points of the nine-point circle. Points are the midpoints of the three sides of the tria ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kiepert Hyperbola
* Friedrich Wilhelm August Ludwig Kiepert, German mathematician *Heinrich Kiepert Heinrich Kiepert (July 31, 1818 – April 21, 1899) was a German geographer. Early life and education Kiepert was born in Berlin. He traveled frequently as a youth with his family and documented his travels by drawing. His family was friends wit ..., German Geographer * Richard Kiepert, German cartographer {{Disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Napoleon Points
In geometry, Napoleon points are a pair of special points associated with a plane triangle. It is generally believed that the existence of these points was discovered by Napoleon Bonaparte, the Emperor of the French from 1804 to 1815, but many have questioned this belief. The Napoleon points are triangle centers and they are listed as the points X(17) and X(18) in Clark Kimberling's Encyclopedia of Triangle Centers. The name "Napoleon points" has also been applied to a different pair of triangle centers, better known as the isodynamic points. Definition of the points First Napoleon point Let ''ABC'' be any given plane triangle. On the sides ''BC'', ''CA'', ''AB'' of the triangle, construct outwardly drawn equilateral triangles ''DBC'', ''ECA'' and ''FAB'' respectively. Let the centroids of these triangles be ''X'', ''Y'' and ''Z'' respectively. Then the lines ''AX'', ''BY'' and ''CZ'' are concurrent. The point of concurrence ''N1'' is the first Napoleon point, or the outer Nap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]