Vandermonde Determinant
In algebra, the Vandermonde polynomial of an ordered set of ''n'' variables X_1,\dots, X_n, named after Alexandre-Théophile Vandermonde, is the polynomial: :V_n = \prod_ (X_j-X_i). (Some sources use the opposite order (X_i-X_j), which changes the sign \binom times: thus in some dimensions the two formulas agree in sign, while in others they have opposite signs.) It is also called the Vandermonde determinant, as it is the determinant of the Vandermonde matrix. The value depends on the order of the terms: it is an alternating polynomial, not a symmetric polynomial. Alternating The defining property of the Vandermonde polynomial is that it is ''alternating'' in the entries, meaning that permuting the X_i by an odd permutation changes the sign, while permuting them by an even permutation does not change the value of the polynomial – in fact, it is the basic alternating polynomial, as will be made precise below. It thus depends on the order, and is zero if two entries are equa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called '' systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algebra studies algebraic structures, which consist of a set of mathemati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadratic Extension
In mathematics, the term quadratic describes something that pertains to squares, to the operation of squaring, to terms of the second degree, or equations or formulas that involve such terms. ''Quadratus'' is Latin for ''square''. Mathematics Algebra (elementary and abstract) * Quadratic function (or quadratic polynomial), a polynomial function that contains terms of at most second degree ** Complex quadratic polynomials, are particularly interesting for their sometimes chaotic properties under iteration * Quadratic equation, a polynomial equation of degree 2 (reducible to 0 = ''ax''2 + ''bx'' + ''c'') * Quadratic formula, calculation to solve a quadratic equation for the independent variable (''x'') * Quadratic field, an algebraic number field of degree two over the field of rational numbers * Quadratic irrational or "quadratic surd", an irrational number that is a root of a quadratic polynomial Calculus * Quadratic integral, the integral of the reciprocal of a second- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Capelli Polynomial
Capelli is an Italian surname meaning hair (plural). Notable people with the surname include: * Adler Capelli (born 1973), Italian former track cyclist * Alfredo Capelli (1855–1910), Italian mathematician *Angelo Felice Capelli (1681–1749), Italian mathematician * Ather Capelli (1902–1944), Italian journalist * Camillo Capelli (16th-century), Italian painter * Claudio Capelli (born 1986), Swiss artistic gymnast * Daniele Capelli (born 1986), Italian footballer * Ermanno Capelli (born 1985), Italian professional road racing cyclist * Francis Alphonse Capelli, the real name of Frank A. Capell (1907–1980), American author * Francesco Capelli (), Italian painter * Giovanni Maria Capelli (1648–1726), Italian composer *Ivan Capelli (born 1963), Italian former Formula One driver * Javier Capelli (born 1985), Argentine footballer *Joseph Capelli, fictional character in Resistance, and main protagonist in '' Resistance 3 '' * Monia Capelli (born 1969), former Italian long-dista ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Special Unitary Group
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 in the special case. The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group , consisting of all unitary matrices. As a compact classical group, is the group that preserves the standard inner product on \mathbb^n. It is itself a subgroup of the general linear group, \operatorname(n) \subset \operatorname(n) \subset \operatorname(n, \mathbb ). The groups find wide application in the Standard Model of particle physics, especially in the electroweak interaction and in quantum chromodynamics. The simplest case, , is the trivial group, having only a single element. The group is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trivial Representation
In the mathematical field of representation theory, a trivial representation is a representation of a group ''G'' on which all elements of ''G'' act as the identity mapping of ''V''. A trivial representation of an associative or Lie algebra is a ( Lie) algebra representation for which all elements of the algebra act as the zero linear map ( endomorphism) which sends every element of ''V'' to the zero vector. For any group or Lie algebra, an irreducible trivial representation always exists over any field, and is one-dimensional, hence unique up to isomorphism. The same is true for associative algebras unless one restricts attention to unital algebra In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition ...s and unital representations. Although the trivial representation is construct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weyl Denominator Formula
In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by . There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula. By definition, the character \chi of a representation \pi of ''G'' is the trace of \pi(g), as a function of a group element g\in G. The irreducible representations in this case are all finite-dimensional (this is part of the Peter–Weyl theorem); so the notion of trace is the usual one from linear algebr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless quantity, number without units, in which case it is known as a numerical factor. It may also be a constant (mathematics), constant with units of measurement, in which it is known as a constant multiplier. In general, coefficients may be any mathematical expression, expression (including Variable (mathematics), variables such as , and ). When the combination of variables and constants is not necessarily involved in a product (mathematics), product, it may be called a ''parameter''. For example, the polynomial 2x^2-x+3 has coefficients 2, −1, and 3, and the powers of the variable x in the polynomial ax^2+bx+c have coefficient parameters a, b, and c. A , also known as constant term or simply constant, is a quantity either implicitly attach ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monic Polynomial
In algebra, a monic polynomial is a non-zero univariate polynomial (that is, a polynomial in a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. That is to say, a monic polynomial is one that can be written as :x^n+c_x^+\cdots+c_2x^2+c_1x+c_0, with n \geq 0. Uses Monic polynomials are widely used in algebra and number theory, since they produce many simplifications and they avoid divisions and denominators. Here are some examples. Every polynomial is associated to a unique monic polynomial. In particular, the unique factorization property of polynomials can be stated as: ''Every polynomial can be uniquely factorized as the product of its leading coefficient and a product of monic irreducible polynomials.'' Vieta's formulas are simpler in the case of monic polynomials: ''The th elementary symmetric function of the roots of a monic polynomial of degree equals (-1)^ic_, where c_ is the coefficient of the th po ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Splitting Field
In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a polynomial ''p''(''X'') over a field ''K'' is a field extension ''L'' of ''K'' over which ''p'' factors into linear factors :p(X) = c \prod_^ (X - a_i) where c \in K and for each i we have X - a_i \in L /math> with ''ai'' not necessarily distinct and such that the roots ''ai'' generate ''L'' over ''K''. The extension ''L'' is then an extension of minimal degree over ''K'' in which ''p'' splits. It can be shown that such splitting fields exist and are unique up to isomorphism. The amount of freedom in that isomorphism is known as the Galois group of ''p'' (if we assume it is separable). A splitting field of a set ''P'' of polynomials is the smallest field over which each of the polynomials in ''P'' splits. Properties An extension ''L'' th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alternating Polynomials
In algebra, an alternating polynomial is a polynomial f(x_1,\dots,x_n) such that if one switches any two of the variables, the polynomial changes sign: :f(x_1,\dots,x_j,\dots,x_i,\dots,x_n) = -f(x_1,\dots,x_i,\dots,x_j,\dots,x_n). Equivalently, if one permutes the variables, the polynomial changes in value by the sign of the permutation: :f\left(x_,\dots,x_\right)= \mathrm(\sigma) f(x_1,\dots,x_n). More generally, a polynomial f(x_1,\dots,x_n,y_1,\dots,y_t) is said to be ''alternating in'' x_1,\dots,x_n if it changes sign if one switches any two of the x_i, leaving the y_j fixed. Relation to symmetric polynomials Products of symmetric and alternating polynomials (in the same variables x_1,\dots,x_n) behave thus: * the product of two symmetric polynomials is symmetric, * the product of a symmetric polynomial and an alternating polynomial is alternating, and * the product of two alternating polynomials is symmetric. This is exactly the addition table for parity, with "symmetric" c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discriminant
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the zero of a function, roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factorization, polynomial factoring, number theory, and algebraic geometry. The discriminant of the quadratic polynomial ax^2+bx+c is :b^2-4ac, the quantity which appears under the square root in the quadratic formula. If a\ne 0, this discriminant is zero if and only if the polynomial has a double root. In the case of real number, real coefficients, it is positive if the polynomial has two distinct real roots, and negative if it has two distinct complex conjugate roots. Similarly, the discriminant of a cubic polynomial is zero if and only if the polynomial has a multiple root. In the case of a cubic with real coefficients, the discriminant is positive if the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |