Unisolvent Functions
In mathematics, a set of ''n'' functions ''f''1, ''f''2, ..., ''f''''n'' is unisolvent (meaning "uniquely solvable") on a domain Ω if the vectors : \beginf_1(x_1) \\ f_1(x_2) \\ \vdots \\ f_1(x_n)\end, \beginf_2(x_1) \\ f_2(x_2) \\ \vdots \\ f_2(x_n)\end, \dots, \beginf_n(x_1) \\ f_n(x_2) \\ \vdots \\ f_n(x_n)\end are linearly independent for any choice of ''n'' distinct points ''x''1, ''x''2 ... ''x''''n'' in Ω. Equivalently, the collection is unisolvent if the matrix ''F'' with entries ''f''''i''(''x''''j'') has nonzero determinant: det(''F'') ≠ 0 for any choice of distinct ''x''''j'''s in Ω. Unisolvency is a property of vector spaces, not just particular sets of functions. That is, a vector space of functions of dimension ''n'' is unisolvent if given any basis (equivalently, a linearly independent set of ''n'' functions), the basis is unisolvent (as a set of functions). This is because any two bases are related by an invertible matrix (the change of basis matrix), so on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Inverse Problem
An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field. It is called an inverse problem because it starts with the effects and then calculates the causes. It is the inverse of a forward problem, which starts with the causes and then calculates the effects. Inverse problems are some of the most important mathematical problems in science and mathematics because they tell us about parameters that we cannot directly observe. They can be found in system identification, optics, radar, acoustics, communication theory, signal processing, medical imaging, computer vision, geophysics, oceanography, astronomy, remote sensing, natural language processing, machine learning, nondestructive testing, slope stability analysis and many other fields. H ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inverse Problems
''Inverse Problems'' is a peer-reviewed, broad-based interdisciplinary journal for pure and applied mathematicians and physicists produced by IOP Publishing. It combines theoretical, experimental and mathematical papers on inverse problems with numerical and practical approaches to their solution. The journal has a specialized relevance to workers in geophysics, optics, radar, acoustics, communication theory, signal processing and medical imaging. The editor-in-chief is Otmar Scherzer at University of Vienna, Austria. It is indexed in Applied Mechanics Reviews, INSPEC Information Services, ISI (Science Citation Index, SciSearch, ISI Alerting Services, COMPUMATH Citation Index, Current Contents/Physical, Chemical and Earth Sciences), Mathematical Reviews, Current Mathematical Publications, MathSciNet, Article@INIST, Engineering Index/Ei Compendex, Zentralblatt MATH, and VINITI Abstracts Journal. See also * Journal of Physics A * Nonlinearity In mathematics and science, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interpolation
In the mathematics, mathematical field of numerical analysis, interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points. In engineering and science, one often has a number of data points, obtained by sampling (statistics), sampling or experimentation, which represent the values of a function for a limited number of values of the Dependent and independent variables, independent variable. It is often required to interpolate; that is, estimate the value of that function for an intermediate value of the independent variable. A closely related problem is the function approximation, approximation of a complicated function by a simple function. Suppose the formula for some given function is known, but too complicated to evaluate efficiently. A few data points from the original function can be interpolated to produce a simpler function which is still fairly close to the original. The resulting gai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inverse Problem
An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, sound source reconstruction, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field. It is called an inverse problem because it starts with the effects and then calculates the causes. It is the inverse of a forward problem, which starts with the causes and then calculates the effects. Inverse problems are some of the most important mathematical problems in science and mathematics because they tell us about parameters that we cannot directly observe. They can be found in system identification, optics, radar, acoustics, communication theory, signal processing, medical imaging, computer vision, geophysics, oceanography, astronomy, remote sensing, natural language processing, machine learning, nondestructive testing, slope stability analys ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intermediate Value Theorem
In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval , then it takes on any given value between f(a) and f(b) at some point within the interval. This has two important corollaries: # If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem). # The image of a continuous function over an interval is itself an interval. Motivation This captures an intuitive property of continuous functions over the real numbers: given ''f'' continuous on ,2/math> with the known values f(1) = 3 and f(2) = 5, then the graph of y = f(x) must pass through the horizontal line y = 4 while x moves from 1 to 2. It represents the idea that the graph of a continuous function on a closed interval can be drawn without lifting a pencil from the paper. Theorem The intermediate value theorem states the following: Consider the closed interval I = ,b/math> ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Interpolation
In numerical analysis, polynomial interpolation is the interpolation of a given data set by the polynomial of lowest possible degree that passes through the points in the dataset. Given a set of data points (x_0,y_0), \ldots, (x_n,y_n), with no two x_j the same, a polynomial function p(x)=a_0+a_1x+\cdots+a_nx^n is said to interpolate the data if p(x_j)=y_j for each j\in\. There is always a unique such polynomial, commonly given by two explicit formulas, the Lagrange polynomials and Newton polynomials. Applications The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions. Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point. Polynomial interpolation also forms the basis for algorithms in numerical quadrature ( Simpson's rule) and numerical ordinary differential equation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' of any positive integer dimension ''n'', which are called Euclidean ''n''-spaces when one wants to specify their dimension. For ''n'' equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of '' proving'' all properties of the space as theorems, by starting from a few fundamental properties, called '' postulates'', which either were considered as evid ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Element Method
Finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. Computers are usually used to perform the calculations required. With high-speed supercomputers, better solutions can be achieved and are often required to solve the largest and most complex problems. FEM is a general numerical method for solving partial differential equations in two- or three-space variables (i.e., some boundary value problems). There are also studies about using FEM to solve high-dimensional problems. To solve a problem, FEM subdivides a large system into smaller, simpler parts called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unisolvence Theorem
In numerical analysis, polynomial interpolation is the interpolation of a given data set by the polynomial of lowest possible degree that passes through the points in the dataset. Given a set of data points (x_0,y_0), \ldots, (x_n,y_n), with no two x_j the same, a polynomial function p(x)=a_0+a_1x+\cdots+a_nx^n is said to interpolate the data if p(x_j)=y_j for each j\in\. There is always a unique such polynomial, commonly given by two explicit formulas, the Lagrange polynomials and Newton polynomials. Applications The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions. Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point. Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Domain Of A Function
In mathematics, the domain of a function is the Set (mathematics), set of inputs accepted by the Function (mathematics), function. It is sometimes denoted by \operatorname(f) or \operatornamef, where is the function. In layman's terms, the domain of a function can generally be thought of as "what x can be". More precisely, given a function f\colon X\to Y, the domain of is . In modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that and are both sets of real numbers, the function can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the -axis of the graph, as the projection of the graph of the function onto the -axis. For a function f\colon X\to Y, the set is called the ''codomain'': the set to which all outputs must belong. The set of specific outputs the function assigns to elements of is called its ''Range of a function, range'' or ''Image (mathematic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |