USP26
USP26 is a peptidase enzyme. The USP26 gene is an X-linked gene exclusively expressed in the testis and it codes for the ubiquitin-specific protease 26. The USP26 gene is found at Xq26.2 on the X-chromosome as a single exon. The enzyme that this gene encodes comprises 913 amino acid residues and it is 104 kilodalton in size, which is transcribed from a sequence of 2794 nucleotide base-pairs on the X-chromosome. The USP26 enzyme is a deubiquitinating enzyme that places a very significant role in the regulation of protein turnover during spermatogenesis. It is a testis-specific enzyme that is solely express in spermatogonia and can prevent the degradation of ubiquitinated USP26 substrates. Recent research has suggested that defects in USP26 may be involved in some cases of male infertility, specifically Sertoli cell-only syndrome, and an absence of sperm in the ejaculate (azoospermia). See also *Male infertility Male infertility refers to a sexually mature male's inability to i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Male Infertility
Male infertility refers to a sexually mature male's inability to impregnate a fertile female. Male infertility can wholly or partially account for 40% of infertility among couples who are trying to have children. "A problem with the male is the sole cause, or a contributing cause, of infertility in about 40 percent of infertile couples. It affects approximately 7% of all men. Male infertility is commonly due to deficiencies in the semen, and semen quality is used as a surrogate measure of male fecundity. More recently, advance sperm analyses that examine intracellular sperm components are being developed. Age considerations Sperm motility increases from puberty through one's mid-thirties. Research shows that from the age of 36 onwards, sperm motility decreases from 40% Grade A & B to 31% in one's 50s. The effects of aging on semen quality is summarized below based on a study of 1,219 subjects: 90% of seminiferous tubules in men in their 20s and 30s contain spermatids, whereas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deubiquitinating Enzyme
Deubiquitinating enzymes (DUBs), also known as deubiquitinating peptidases, deubiquitinating isopeptidases, deubiquitinases, ubiquitin proteases, ubiquitin hydrolases, or ubiquitin isopeptidases, are a large group of proteases that cleave ubiquitin from proteins. Ubiquitin is attached to proteins in order to regulate the degradation of proteins via the proteasome and lysosome; coordinate the Subcellular localization, cellular localisation of proteins; activate and inactivate proteins; and modulate protein-protein interactions. DUBs can reverse these effects by cleaving the peptide or isopeptide bond between ubiquitin and its substrate protein. In humans there are nearly 100 DUB genes, which can be classified into two main classes: cysteine proteases and metalloproteases. The cysteine proteases comprise ubiquitin-specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), Machado-Josephin domain proteases (MJDs) and ovarian tumour proteases (OTU). The metalloprotease group con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Peptidase
A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in numerous biological pathways, including digestion of ingested proteins, protein catabolism (breakdown of old proteins), and cell signaling. In the absence of functional accelerants, proteolysis would be very slow, taking hundreds of years. Proteases can be found in all forms of life and viruses. They have independently evolved multiple times, and different classes of protease can perform the same reaction by completely different catalytic mechanisms. Classification Based on catalytic residue Proteases can be classified into seven broad groups: * Serine proteases - using a serine alcohol * Cysteine protea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |