Triangle Function
A triangular function (also known as a triangle function, hat function, or tent function) is a function whose graph takes the shape of a triangle. Often this is an isosceles triangle of height 1 and base 2 in which case it is referred to as ''the'' triangular function. Triangular functions are useful in signal processing and ''communication systems engineering'' as representations of idealized signals, and the triangular function specifically as an integral transform kernel function from which more realistic signals can be derived, for example in kernel density estimation. It also has applications in pulse-code modulation as a pulse shape for transmitting Digital signal (electronics), digital signals and as a matched filter for receiving the signals. It is also used to define the triangular window sometimes called the Bartlett window. Definitions The most common definition is as a piecewise function: : \begin \operatorname(x) = \Lambda(x) \ &\overset \ \max\big(1 - , x, , 0 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle Wave
A triangular wave or triangle wave is a non-sinusoidal waveform named for its triangular shape. It is a periodic, piecewise linear, continuous real function. Like a square wave, the triangle wave contains only odd harmonics. However, the higher harmonics roll off much faster than in a square wave (proportional to the inverse square of the harmonic number as opposed to just the inverse). Definitions Definition A triangle wave of period ''p'' that spans the range , 1is defined as x(t) = 2 \left, \frac - \left\lfloor \frac + \frac \right\rfloor \, where \lfloor\ \rfloor is the floor function. This can be seen to be the absolute value of a shifted sawtooth wave. For a triangle wave spanning the range the expression becomes x(t)= 2 \left , 2 \left( \frac - \left\lfloor \frac + \frac \right\rfloor \right) \ - 1. A more general equation for a triangle wave with amplitude a and period p using the modulo operation and absolute value is y(x) = \frac \left, \left ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangular Distribution
In probability theory and statistics, the triangular distribution is a continuous probability distribution with lower limit ''a'', upper limit ''b'', and mode ''c'', where ''a'' < ''b'' and ''a'' ≤ ''c'' ≤ ''b''. Special cases Mode at a bound The distribution simplifies when ''c'' = ''a'' or ''c'' = ''b''. For example, if ''a'' = 0, ''b'' = 1 and ''c'' = 1, then the and CDF become: : : |
|
Tent Map
In mathematics, the tent map with parameter μ is the real-valued function ''f''μ defined by :f_\mu(x) := \mu\min\, the name being due to the tent-like shape of the graph of ''f''μ. For the values of the parameter μ within 0 and 2, ''f''μ maps the unit interval , 1into itself, thus defining a discrete-time dynamical system on it (equivalently, a recurrence relation). In particular, iterating a point ''x''0 in , 1gives rise to a sequence x_n: :x_ = f_\mu(x_n) = \begin \mu x_n & \mathrm~~ x_n . The \mu = 2 case of the tent map is the present case of a= \tfrac. A sequence will have the same autocorrelation function as will data from the first-order autoregressive process In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it can be used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregre ... w_ = (2a-1)w_n + u_ with in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Källén Function
The Källén function, also known as triangle function, is a polynomial function in three variables, which appears in geometry and particle physics. In the latter field it is usually denoted by the symbol \lambda. It is named after the theoretical physicist Gunnar Källén, who introduced it as a short-hand in his textbook ''Elementary Particle Physics''.G. Källén, ''Elementary Particle Physics'', (Addison-Wesley, 1964) Definition The function is given by a quadratic polynomial in three variables :\lambda(x,y,z) \equiv x^2 + y^2 + z^2 - 2xy - 2yz - 2zx. Applications In geometry the function describes the area A of a triangle with side lengths a,b,c: :A=\frac \sqrt. See also Heron's formula. The function appears naturally in the kinematics of relativistic particles, e.g. when expressing the energy and momentum components in the center of mass frame by Mandelstam variables In theoretical physics, the Mandelstam variables are numerical quantities that encode the energy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sinc Function
In mathematics, physics and engineering, the sinc function ( ), denoted by , has two forms, normalized and unnormalized.. In mathematics, the historical unnormalized sinc function is defined for by \operatorname(x) = \frac. Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(''x''). In digital signal processing and information theory, the normalized sinc function is commonly defined for by \operatorname(x) = \frac. In either case, the value at is defined to be the limiting value \operatorname(0) := \lim_\frac = 1 for all real (the limit can be proven using the squeeze theorem). The normalization causes the definite integral of the function over the real numbers to equal 1 (whereas the same integral of the unnormalized sinc function has a value of ). As a further useful property, the zeros of the normalized sinc function are the nonzero integer values of . The normalized sinc function is the Fourier transform of the r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fourier Transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term ''Fourier transform'' refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches. Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordered Pair
In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unordered pair'', denoted , always equals the unordered pair . Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors. (Technically, this is an abuse of terminology since an ordered pair need not be an element of a vector space.) The entries of an ordered pair can be other ordered pairs, enabling the recursive definition of ordered ''n''-tuples (ordered lists of ''n'' objects). For example, the ordered triple (''a'',''b'',''c'') can be defined as (''a'', (''b'',''c'')), i.e., as one pair nested in another. In the ordered pair (''a'', ''b''), the object ''a'' is called the ''first entry'', and the object ''b'' the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Piecewise Linear Function
In mathematics, a piecewise linear or segmented function is a real-valued function of a real variable, whose graph is composed of straight-line segments. Definition A piecewise linear function is a function defined on a (possibly unbounded) interval of real numbers, such that there is a collection of intervals on each of which the function is an affine function. (Thus "piecewise linear" is actually defined to mean "piecewise affine".) If the domain of the function is compact, there needs to be a finite collection of such intervals; if the domain is not compact, it may either be required to be finite or to be locally finite in the reals. Examples The function defined by : f(x) = \begin -x - 3 & \textx \leq -3 \\ x + 3 & \text-3 < x < 0 \\ -2x + 3 & \text0 \leq x < 3 \\ 0.5x - 4.5 & \textx \geq 3 \end is piecewise linear with four pieces. The graph of this function is shown to the right. Since the graph of an affine(*) function is a [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
B-spline
In numerical analysis, a B-spline (short for basis spline) is a type of Spline (mathematics), spline function designed to have minimal Support (mathematics), support (overlap) for a given Degree of a polynomial, degree, smoothness, and set of breakpoints (Knot (mathematics), knots that partition its Domain of a function, domain), making it a fundamental building block for all spline functions of that degree. A B-spline is defined as a piecewise polynomial of Order (mathematics), order n, meaning a degree of n - 1. It’s built from sections that meet at these knots, where the continuity of the function and its Derivative, derivatives depends on how often each knot repeats (its multiplicity). Any spline function of a specific degree can be uniquely expressed as a linear combination of B-splines of that degree over the same knots, a property that makes them versatile in mathematical modeling. A special subtype, cardinal B-splines, uses equidistant knots. The concept of B-splines tra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Absolute Value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), and For example, the absolute value of 3 and the absolute value of −3 is The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts. Terminology and notation In 1806, Jean-Robert Argand introduced the term ''module'', meaning ''unit of measure'' in French, specifically for the ''complex'' absolute value,Oxford English Dictionary, Draft Revision, Ju ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |