HOME





Touchard Polynomials
The Touchard polynomials, studied by , also called the exponential polynomials or Bell polynomials, comprise a polynomial sequence of binomial type defined by :T_n(x)=\sum_^n S(n,k)x^k=\sum_^n \left\x^k, where S(n,k)=\left\ is a Stirling number of the second kind, i.e., the number of partitions of a set of size ''n'' into ''k'' disjoint non-empty subsets. The first few Touchard polynomials are :T_1(x)=x, :T_2(x)=x^2+x, :T_3(x)=x^3+3x^2+x, :T_4(x)=x^4+6x^3+7x^2+x, :T_5(x)=x^5+10x^4+25x^3+15x^2+x. Properties Basic properties The value at 1 of the ''n''th Touchard polynomial is the ''n''th Bell number, i.e., the number of partitions of a set of size ''n'': :T_n(1)=B_n. If ''X'' is a random variable with a Poisson distribution with expected value λ, then its ''n''th moment is E(''X''''n'') = ''T''''n''(λ), leading to the definition: :T_(x)=e^\sum_^\infty \frac . Using this fact one can quickly prove that this polynomial sequence is of binomial type, i.e., it s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Bell Polynomial
In combinatorial mathematics, the Bell polynomials, named in honor of Eric Temple Bell, are used in the study of set partitions. They are related to Stirling and Bell numbers. They also occur in many applications, such as in Faà di Bruno's formula. Definitions Exponential Bell polynomials The ''partial'' or ''incomplete'' exponential Bell polynomials are a triangular array of polynomials given by :\begin B_(x_1,x_2,\dots,x_) &= \sum \left(\right)^\left(\right)^\cdots\left(\right)^ \\ &= n! \sum \prod_^ \frac, \end where the sum is taken over all sequences ''j''1, ''j''2, ''j''3, ..., ''j''''n''−''k''+1 of non-negative integers such that these two conditions are satisfied: :j_1 + j_2 + \cdots + j_ = k, :j_1 + 2 j_2 + 3 j_3 + \cdots + (n-k+1)j_ = n. The sum :\begin B_n(x_1,\dots,x_n)&=\sum_^n B_(x_1,x_2,\dots,x_)\\ &=n! \sum_ \prod_^n \frac \end is called the ''n''th ''complete exponential Bell polynomial''. Ordinary Bell polynomials Likewise, the partial ''ordinary'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Mahler Measure
In mathematics, the Mahler measure M(p) of a polynomial p(z) with complex coefficients is defined as M(p) = , a, \prod_ , \alpha_i, = , a, \prod_^n \max\, where p(z) factorizes over the complex numbers \mathbb as p(z) = a(z-\alpha_1)(z-\alpha_2)\cdots(z-\alpha_n). The Mahler measure can be viewed as a kind of height function. Using Jensen's formula, it can be proved that this measure is also equal to the geometric mean of , p(z), for z on the unit circle (i.e., , z, = 1): M(p) = \exp\left(\int_^ \ln(, p(e^), )\, d\theta \right). By extension, the Mahler measure of an algebraic number \alpha is defined as the Mahler measure of the minimal polynomial of \alpha over \mathbb. In particular, if \alpha is a Pisot number or a Salem number, then its Mahler measure is simply \alpha. The Mahler measure is named after the German-born Australian mathematician Kurt Mahler. Properties * The Mahler measure is multiplicative: \forall p, q, \,\, M(p \cdot q) = M(p) \cdot M(q). * M( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Contour Integral
In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane. Contour integration is closely related to the calculus of residues, a method of complex analysis. One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. It also has various applications in physics. Contour integration methods include: * direct integration of a complex-valued function along a curve in the complex plane * application of the Cauchy integral formula * application of the residue theorem One method can be used, or a combination of these methods, or various limiting processes, for the purpose of finding these integrals or sums. Curves in the complex plane In complex analysis, a contour is a type of curve in the complex plane. In contour integration, contours provide a precise definition of the curves on which an integral may be suitab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Stirling Numbers Of The Second Kind
In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of ''n'' objects into ''k'' non-empty subsets and is denoted by S(n,k) or \textstyle \left\. Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. They are named after James Stirling. The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the second kind. Identities linking the two kinds appear in the article on Stirling numbers. Definition The Stirling numbers of the second kind, written S(n,k) or \lbrace\textstyle\rbrace or with other notations, count the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets. Equivalently, they count the number of different equivalence relations wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Generating Function
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series. Every sequence in principle has a generating function of each type (except that Lambert and Dirichlet series require indices to start at 1 rather than 0), but the ease with which they can be handled may differ considerably. The particular generating function, if any, that is most useful in a given context will depend upon the nature of the sequence and the details of the problem being addressed. Generating functions are sometimes called generating series, in that a series of terms can be said to be the generator of its sequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Umbral Calculus
The term umbral calculus has two related but distinct meanings. In mathematics, before the 1970s, umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain shadowy techniques used to prove them. These techniques were introduced in 1861 by John Blissard and are sometimes called Blissard's symbolic method. They are often attributed to Édouard Lucas (or James Joseph Sylvester), who used the technique extensively. The use of shadowy techniques was put on a solid mathematical footing starting in the 1970s, and the resulting mathematical theory is also referred to as "umbral calculus". History In the 1930s and 1940s, Eric Temple Bell attempted to set the umbral calculus on a rigorous footing, however his attempt in making this kind of argument logically rigorous was unsuccessful. The combinatorialist John Riordan in his book ''Combinatorial Identities'' published in the 1960s, used techniques of this sort extensively. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Poisson Distribution
In probability theory and statistics, the Poisson distribution () is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1 (e.g., number of events in a given area or volume). The Poisson distribution is named after French mathematician Siméon Denis Poisson. It plays an important role for discrete-stable distributions. Under a Poisson distribution with the expectation of ''λ'' events in a given interval, the probability of ''k'' events in the same interval is: :\frac . For instance, consider a call center which receives an average of ''λ ='' 3 calls per minute at all times of day. If the calls are independent, receiving one does not change the probability of when the next on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Acta Mathematica
''Acta Mathematica'' is a peer-reviewed open-access scientific journal covering research in all fields of mathematics. According to Cédric Villani, this journal is "considered by many to be the most prestigious of all mathematical research journals".. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 4.273, ranking it 5th out of 330 journals in the category "Mathematics". Publication history The journal was established by Gösta Mittag-Leffler in 1882 and is published by Institut Mittag-Leffler, a research institute for mathematics belonging to the Royal Swedish Academy of Sciences. The journal was printed and distributed by Springer from 2006 to 2016. Since 2017, Acta Mathematica has been published electronically and in print by International Press. Its electronic version is open access without publishing fees. Poincaré episode The journal's "most famous episode" (according to Villani) concerns Henri Poincaré, who won a prize offered in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function (mathematics), function in which * the Domain of a function, domain is the set of possible Outcome (probability), outcomes in a sample space (e.g. the set \ which are the possible upper sides of a flipped coin heads H or tails T as the result from tossing a coin); and * the Range of a function, range is a measurable space (e.g. corresponding to the domain above, the range might be the set \ if say heads H mapped to -1 and T mapped to 1). Typically, the range of a random variable is a subset of the Real number, real numbers. Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Bell Numbers
In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s. The Bell numbers are denoted B_n, where n is an integer greater than or equal to zero. Starting with B_0 = B_1 = 1, the first few Bell numbers are :1, 1, 2, 5, 15, 52, 203, 877, 4140, \dots . The Bell number B_n counts the different ways to partition a set that has exactly n elements, or equivalently, the equivalence relations on it. B_n also counts the different rhyme schemes for n -line poems. As well as appearing in counting problems, these numbers have a different interpretation, as moments of probability distributions. In particular, B_n is the n -th moment of a Poisson distribution with mean 1. Counting Set partitions In general, B_n is the number o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]