HOME



picture info

Thomson Problem
The objective of the Thomson problem is to determine the minimum electrostatic potential energy configuration of electrons constrained to the surface of a unit sphere that repel each other with a force given by Coulomb's law. The physicist J. J. Thomson posed the problem in 1904 after proposing an atomic model, later called the plum pudding model, based on his knowledge of the existence of negatively charged electrons within neutrally-charged atoms. Related problems include the study of the geometry of the minimum energy configuration and the study of the large behavior of the minimum energy. Mathematical statement The electrostatic interaction energy occurring between each pair of electrons of equal charges (e_i = e_j = e, with e the elementary charge of an electron) is given by Coulomb's law, : U_(N)=, where \epsilon_0 is the electric constant and r_=, \mathbf_i - \mathbf_j, is the distance between each pair of electrons located at points on the sphere defined by vectors \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrostatic Potential Energy
Electric potential energy is a potential energy (measured in joules) that results from conservative force, conservative Coulomb forces and is associated with the configuration of a particular set of point electric charge, charges within a defined physical system, system. An ''object'' may be said to have electric potential energy by virtue of either its own electric charge or its relative position to other electrically charged ''objects''. The term "electric potential energy" is used to describe the potential energy in systems with Time-variant system, time-variant electric fields, while the term "electrostatic potential energy" is used to describe the potential energy in systems with time-invariant system, time-invariant electric fields. Definition The electric potential energy of a system of point charges is defined as the Work (physics), work required to assemble this system of charges by bringing them close together, as in the system from an infinite distance. Alternativel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangular Dipyramid
A triangular bipyramid is a hexahedron with six triangular faces constructed by attaching two tetrahedra face-to-face. The same shape is also known as a triangular dipyramid or trigonal bipyramid. If these tetrahedra are regular, all faces of a triangular bipyramid are equilateral. It is an example of a deltahedron, composite polyhedron, and Johnson solid. Many polyhedra are related to the triangular bipyramid, such as similar shapes derived from different approaches and the triangular prism as its dual polyhedron. Applications of a triangular bipyramid include trigonal bipyramidal molecular geometry which describes its atom cluster, a solution of the Thomson problem, and the representation of color order systems by the eighteenth century. Special cases As a right bipyramid Like other bipyramids, a triangular bipyramid can be constructed by attaching two tetrahedra face-to-face. These tetrahedra cover their triangular base, and the resulting polyhedron has six triangles, fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Local Search (optimization)
In computer science, local search is a heuristic method for solving computationally hard Mathematical optimization, optimization problems. Local search can be used on problems that can be formulated as finding a solution that maximizes a criterion among a number of candidate solutions. Local Search algorithm, search algorithms move from solution to solution in the space of candidate solutions (the ''search space'') by applying local changes, until a solution deemed optimal is found or a time bound is elapsed. Local search algorithms are widely applied to numerous hard computational problems, including problems from computer science (particularly artificial intelligence), mathematics, operations research, engineering, and bioinformatics. Examples of local search algorithms are WalkSAT, the 2-opt, 2-opt algorithm for the Traveling Salesman Problem and the Metropolis–Hastings algorithm. While it is sometimes possible to substitute gradient descent for a local search algorithm, gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithms
In mathematics and computer science, an algorithm () is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an effective method, an algorithm can be expressed within a finite amount of space and time"Any classic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spherical Design
A spherical design, part of combinatorial design theory in mathematics, is a finite set of ''N'' points on the ''d''-dimensional unit ''d''-sphere ''Sd'' such that the average value of any polynomial ''f'' of degree ''t'' or less on the set equals the average value of ''f'' on the whole sphere (that is, the integral of ''f'' over ''Sd'' divided by the area or measure of ''Sd''). Such a set is often called a spherical ''t''-design to indicate the value of ''t'', which is a fundamental parameter. The concept of a spherical design is due to Delsarte, Goethals, and Seidel, although these objects were understood as particular examples of cubature formulas earlier. Spherical designs can be of value in approximation theory, in statistics for experimental design, in combinatorics, and in geometry. The main problem is to find examples, given ''d'' and ''t'', that are not too large; however, such examples may be hard to come by. Spherical t-designs have also recently been appropriated in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-sphere
In mathematics, an -sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional and the sphere 2-dimensional because a point within them has one and two degrees of freedom respectively. However, the typical embedding of the 1-dimensional circle is in 2-dimensional space, the 2-dimensional sphere is usually depicted embedded in 3-dimensional space, and a general -sphere is embedded in an -dimensional space. The term ''hyper''sphere is commonly used to distinguish spheres of dimension which are thus embedded in a space of dimension , which means that they cannot be easily visualized. The -sphere is the setting for -dimensional spherical geometry. Considered extrinsically, as a hypersurface embedded in -dimensional Euclidean space, an -sphere is the locus of points at equal distance (the ''radius'') from a given '' center'' point. Its interior, consisting of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tammes Problem
In geometry, the Tammes problem is a problem in circle packing, packing a given number of points on the surface of a sphere such that the minimum distance between points is maximized. It is named after the Dutch botanist Pieter Merkus Lambertus Tammes (the nephew of pioneering botanist Jantina Tammes) who posed the problem in his 1930 doctoral dissertation on the distribution of pores on pollen grains. It can be viewed as a particular special case of the Thomson problem#Generalizations, generalized Thomson problem of minimizing the total Coulomb force of electrons in a spherical arrangement. Thus far, solutions have been proven only for small numbers of circles: 3 through 14, and 24. There are conjectured solutions for many other cases, including those in higher dimensions. See also * Spherical code * Kissing number problem * Cylinder sphere packing, Cylinder sphere packings References Bibliography ; Journal articles * * * * * ; Books * * External links * . P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poppy-seed Bagel Theorem
In physics, the poppy-seed bagel theorem concerns interacting particles (e.g., electrons) confined to a bounded surface (or body) A when the particles repel each other pairwise with a magnitude that is proportional to the inverse distance between them raised to some positive power s. In particular, this includes the Coulomb law observed in electrostatics and Riesz potentials extensively studied in potential theory. Other classes of potentials, which not necessarily involve the Riesz kernel, for example nearest neighbor interactions, are also described by this theorem in the macroscopic regime. For N such particles, a stable equilibrium state, which depends on the parameter s, is attained when the associated potential energy of the system is minimal (the so-called generalized Thomson problem). For large numbers of points, these equilibrium configurations provide a discretization of A which may or may not be nearly uniform with respect to the surface area (or volume) of A. The poppy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dodecahedron
In geometry, a dodecahedron (; ) or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three Kepler–Poinsot polyhedron, regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120. Some dodecahedra have the same combinatorial structure as the regular dodecahedron (in terms of the graph formed by its vertices and edges), but their pentagonal faces are not regular: The #Pyritohedron, pyritohedron, a common crystal form in pyrite, has pyritohedral symmetry, while the #Tetartoid, tetartoid has tetrahedral symmetry. The rhombic dodecahedron can be seen as a limiting case of the pyritohedron, and it has octahedral symmetry. The elongated dodecahedron and trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra, are space-filling polyhedra, space-filling. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cube
A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It is a type of parallelepiped, with pairs of parallel opposite faces, and more specifically a rhombohedron, with congruent edges, and a rectangular cuboid, with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron. The cube can be represented in many ways, one of which is the graph known as the cubical graph. It can be constructed by using the Cartesian product of graphs. The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract. A cube with 1, unit s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Platonic Solid
In geometry, a Platonic solid is a Convex polytope, convex, regular polyhedron in three-dimensional space, three-dimensional Euclidean space. Being a regular polyhedron means that the face (geometry), faces are congruence (geometry), congruent (identical in shape and size) regular polygons (all angles congruent and all edge (geometry), edges congruent), and the same number of faces meet at each Vertex (geometry), vertex. There are only five such polyhedra: Geometers have studied the Platonic solids for thousands of years. They are named for the ancient Greek philosopher Plato, who hypothesized in one of his dialogues, the ''Timaeus (dialogue), Timaeus'', that the classical elements were made of these regular solids. History The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]