Thiophosphoryl Trifluoride
   HOME





Thiophosphoryl Trifluoride
Thiophosphoryl fluoride is an Inorganic compound, inorganic molecular gas with formula containing phosphorus, sulfur and fluorine. It spontaneously ignites in air and burns with a cool flame. The discoverers were able to have flames around their hands without discomfort, and called it "probably one of the coldest flames known". The gas was discovered in 1888. It is useless for chemical warfare as it burns immediately and is not toxic enough. Preparation Thiophosphoryl fluoride was discovered and named by J. W. Rodger and Thomas Edward Thorpe, T. E. Thorpe in 1888. They prepared it by heating arsenic trifluoride and thiophosphoryl chloride together in a sealed glass tube to 150 °C. Also produced in this reaction was silicon tetrafluoride and phosphorus fluorides. By increasing the the proportion of was increased. They observed the spontaneous inflammability. They also used this method: : at 170 °C, and also substituting a mixture of red phosphorus and sulfur, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedral Molecular Geometry
In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are arccos(−) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane () as well as its heavier analogues. Methane and other perfectly symmetrical tetrahedral molecules belong to point group ''Td'', but most tetrahedral molecules have lower symmetry. Tetrahedral molecules can be chiral. Tetrahedral bond angle The bond angle for a symmetric tetrahedral molecule such as CH4 may be calculated using the dot product of two vectors. As shown in the diagram at left, the molecule can be inscribed in a cube with the tetravalent atom (e.g. carbon) at the cube centre which is the origin of coordinates, O. The four monovalent atoms (e.g. hydrogens) are at four corners of the cube (A, B, C, D) chosen so that no two atoms are at adjacent corners linked by only one cube edge. If the edge len ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bismuth Trifluoride
Bismuth(III) fluoride or bismuth trifluoride is a chemical compound of bismuth and fluorine. The chemical formula is BiF3. It is a grey-white powder melting at 649 °C. It occurs in nature as the rare mineral gananite. Synthesis Bismuth fluoride can be prepared by reacting bismuth(III) oxide with hydrofluoric acid: :Bi2O3 + 6 HF → 2 BiF3 + 3 H2O Structure α-BiF3 has a cubic crystalline structure (Pearson symbol cF16, space group Fm-3m, No. 225). BiF3 is the prototype for the D03 structure, which is adopted by several intermetallics, including Mg3Pr, Cu3Sb, Fe3Si, and AlFe3, as well as by the hydride LaH3.0. The unit cell is face-centered cubic with Bi at the face centers and vertices, and F at the octahedral site (mid-edges, center), and tetrahedral sites (centers of the 8 sub cubes) - thus the primitive cell contains 4 Bi and 12 F. Alternatively, with the unit cell shifted (1/4,1/4,1/4) the description can be of a fcc cell with face, edge, corner, and centers filled w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Silicon Tetraisocyanate
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a member of group 14 in the periodic table: carbon is above it; and germanium, tin, lead, and flerovium are below it. It is relatively unreactive. Silicon is a significant element that is essential for several physiological and metabolic processes in plants. Silicon is widely regarded as the predominant semiconductor material due to its versatile applications in various electrical devices such as transistors, solar cells, integrated circuits, and others. These may be due to its significant band gap, expansive optical transmission range, extensive absorption spectrum, surface roughening, and effective anti-reflection coating. Because of its high chemical affinity for oxygen, it was not until 1823 that Jöns Jakob Berzelius was first able to prepare ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE