Thin Film Interference
Thin-film interference is a natural phenomenon in which light waves reflected by the upper and lower boundaries of a thin film Interference (wave propagation), interfere with one another, increasing reflection at some wavelengths and decreasing it at others. When white light is incident on a thin film, this effect produces colorful reflections. Thin-film interference explains the multiple colors seen in light reflected from soap bubbles and oil films on water. It is also the mechanism behind the action of antireflection coatings used on glasses and camera lenses. If the thickness of the film is much larger than the coherence length of the incident light, then the interference pattern will be washed out due to the linewidth of the light source. The reflection from a thin film is typically not individual wavelengths as produced by a diffraction grating or Prism (optics), prism, but rather are a mixture of various wavelengths. Therefore, the colors observed are rarely those of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lipid Islands On Soap Bubble (horizontal)
Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins Vitamin A, A, Vitamin D, D, Vitamin E, E and Vitamin K, K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, lipid signaling, signaling, and acting as structural components of cell membranes. Lipids have applications in the Cosmetic industry, cosmetic and Food industry, food industries, and in nanotechnology. Lipids are broadly defined as Hydrophobe, hydrophobic or Amphiphile, amphiphilic small molecules; the amphiphilic nature of some lipids allows them to form structures such as vesicle (biology), vesicles, multilamellar/unilamellar liposomes, or membranes in an aqueous environment. Biological lipids originate entirely or in part from two distinct types of biochemical subunits or "building-blocks": :wikt:ketoacyl, ketoacyl and isoprene groups. Using this approach, lipids may be divided into eight catego ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Optical Filter
An optical filter is a device that selectively transmits light of different wavelengths, usually implemented as a glass plane or plastic device in the optical path, which are either dyed in the bulk or have interference coatings. The optical properties of filters are completely described by their frequency response, which specifies how the magnitude and phase of each frequency component of an incoming signal is modified by the filter. Filters mostly belong to one of two categories. The simplest, physically, is the absorptive filter; then there are interference or dichroic filters. Many optical filters are used for optical imaging and are manufactured to be transparent; some used for light sources can be translucent. Optical filters selectively transmit light in a particular range of wavelengths, that is, colours, while absorbing the remainder. They can usually pass long wavelengths only (longpass), short wavelengths only (shortpass), or a band of wavelengths, bloc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flatness (manufacturing)
In manufacturing and mechanical engineering, flatness is an important geometric condition for workpieces and tools. Flatness is the condition of a surface or derived median plane having all elements in one plane. Geometric dimensioning and tolerancing has provided geometrically defined, quantitative ways of defining flatness operationally. Flatness deviation may be defined in terms of least squares fit to a plane ("statistical flatness") or worst-case (the distance between the two closest parallel planes within). It can be specified for a given area and/or over an entire surface. In the manufacture of precision parts and assemblies, especially where parts will be required to be connected across a surface area in an air-tight or liquid-tight manner, flatness is a critical quality of the manufactured surfaces. Such surfaces are usually machined Machining is a manufacturing process where a desired shape or part is created using the controlled removal of material, most often m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Optical Flat
An optical flat is an Optics, optical-grade piece of glass lapping, lapped and polishing, polished to be extremely flat on one or both sides, usually within a few tens of nanometres (billionths of a metre). They are used with a monochromatic light to determine the flatness (manufacturing), flatness (surface accuracy) of other surfaces (whether optical, metallic, ceramic, or otherwise), by means of Interference (wave propagation), wave interference. When an optical flat is placed on another surface and illuminated, the light waves reflect off both the bottom surface of the flat and the surface it is resting on. This causes a phenomenon similar to thin-film interference. The reflected waves interfere, creating a pattern of interference fringes visible as light and dark bands. The spacing between the fringes is smaller where the gap is changing more rapidly, indicating a departure from flatness in one of the two surfaces. This is comparable to the contour lines one would find on a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Newton's Rings
Newton's rings is a phenomenon in which an interference pattern is created by the reflection of light between two surfaces, typically a spherical surface and an adjacent touching flat surface. It is named after Isaac Newton, who investigated the effect in 1666. When viewed with monochromatic light, Newton's rings appear as a series of concentric, alternating bright and dark rings centered at the point of contact between the two surfaces. When viewed with white light, it forms a concentric ring pattern of rainbow colors because the different wavelengths of light interfere at different thicknesses of the air layer between the surfaces. History The phenomenon was first described by Robert Hooke in his 1665 book ''Micrographia''. Its name derives from the mathematician and physicist Sir Isaac Newton, who studied the phenomenon in 1666 while sequestered at home in Lincolnshire in the time of the Great Plague that had shut down Trinity College, Cambridge. He recorded his observations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monochrome
A monochrome or monochromatic image, object or palette is composed of one color (or values of one color). Images using only shades of grey are called grayscale (typically digital) or black-and-white (typically analog). In physics, monochromatic light refers to electromagnetic radiation that contains a narrow band of wavelengths, which is a distinct concept. Application Of an image, the term monochrome is usually taken to mean the same as black and white or, more likely, grayscale, but may also be used to refer to other combinations containing only tones of a single color, such as green-and-white or green-and-red. It may also refer to sepia displaying tones from light tan to dark brown or cyanotype ("blueprint") images, and early photographic methods such as daguerreotypes, ambrotypes, and tintypes, each of which may be used to produce a monochromatic image. In computing, monochrome has two meanings: * it may mean having only one color which is either on or off (a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thin Film Interference Gasoline On Water @ 589nm
Thin may refer to: * ''Thin'' (film), a 2006 documentary about eating disorders * Thin, a web server based on Mongrel * Thin (name), including a list of people with the name * Mal language, also known as Thin See also * * * Body shape * Emaciation * Underweight * Paper Thin (other) * Thin capitalisation * Thin client, a computer in a client-server architecture network. * Thin film, a material layer of about 1 μm thickness. * Thin-layer chromatography (TLC), a chromatography technique used in chemistry to separate chemical compounds * Thin layers (oceanography), congregations of phytoplankton and zooplankton in the water column * Thin lens, lens with a thickness that is negligible compared to the focal length of the lens in optics * Thin Lizzy, Irish rock band formed in Dublin in 1969 * Thin Man (other) * The Thin Blue Line (other) The thin blue line is a colloquial term for police forces. __NOTOC__ The Thin Blue Line or Thin Blue Line may also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Snell's Law
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air. In optics, the law is used in ray tracing to compute the angles of incidence or refraction, and in experimental optics to find the refractive index of a material. The law is also satisfied in meta-materials, which allow light to be bent "backward" at a negative angle of refraction with a negative refractive index. The law states that, for a given pair of media, the ratio of the sines of angle of incidence \left(\theta_1 \right) and angle of refraction \left(\theta_2\right) is equal to the refractive index of the second medium with regard to the first (n_) which is equal to the ratio of the refractive indices \left(\tfrac\right) of the two media, or e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reflection Phase Change
A phase change sometimes occurs when a wave is reflected, specifically from a medium with faster wave speed to the boundary of a medium with slower wave speed. Such reflections occur for many types of wave, including light waves, sound waves, and waves on vibrating strings. General theory For an incident wave traveling from one medium (where the wave speed is ) to another medium (where the wave speed is ), one part of the wave will transmit into the second medium, while another part reflects back into the other direction and stays in the first medium. The amplitude of the transmitted wave and the reflected wave can be calculated by using the continuity condition at the boundary. Consider the component of the incident wave with an angular frequency of , which has the waveform u^(x,t) = Ae^;\ A\in \ComplexAt t=0, the incident reaches the boundary between the two mediums at x=0. Therefore, the corresponding reflected wave and the transmitted wave will have the waveforms u^(x,t) = B ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interference (wave Propagation)
In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater amplitude (constructive interference) or lower amplitude (destructive interference) if the two waves are in phase or out of phase, respectively. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves as well as in loudspeakers as electrical waves. Etymology The word ''interference'' is derived from the Latin words ''inter'' which means "between" and ''fere'' which means "hit or strike", and was used in the context of wave superposition by Thomas Young in 1801. Mechanisms The principle of superposition of waves states that when two or more propagating waves of the same type are incident on the same point, the resultant amplitude at that point is equal to the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fresnel Equations
The Fresnel equations (or Fresnel coefficients) describe the reflection and transmission of light (or electromagnetic radiation in general) when incident on an interface between different optical media. They were deduced by French engineer and physicist Augustin-Jean Fresnel () who was the first to understand that light is a transverse wave, when no one realized that the waves were electric and magnetic fields. For the first time, polarization could be understood quantitatively, as Fresnel's equations correctly predicted the differing behaviour of waves of the ''s'' and ''p'' polarizations incident upon a material interface. Overview When light strikes the interface between a medium with refractive index and a second medium with refractive index , both reflection and refraction of the light may occur. The Fresnel equations give the ratio of the ''reflected'' wave's electric field to the incident wave's electric field, and the ratio of the ''transmitted'' wave's electric f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Micron
The micrometre (English in the Commonwealth of Nations, Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a unit of length in the International System of Units (SI) equalling (SI standard prefix "micro-" = ); that is, one millionth of a metre (or one thousandth of a millimetre, , or about ). The nearest smaller common SI Unit, SI unit is the nanometre, equivalent to one thousandth of a micrometre, one millionth of a millimetre or one billionth of a metre (). The micrometre is a common unit of measurement for wavelengths of infrared radiation as well as sizes of biological cell (biology), cells and bacteria, and for grading wool by the diameter of the fibres. The width of a single human hair ranges from approximately 20 to . Examples Between 1 μm and 10 μm: * 1–10 μm – length of a typical bacterium * 3–8 μm – width of str ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |