HOME



picture info

Tango Tree
A tango tree is a type of binary search tree proposed by Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pătrașcu in 2004. It is named after Buenos Aires, of which the tango is emblematic. It is an online binary search tree that achieves an O(\log \log n) competitive ratio relative to the offline optimal binary search tree, while only using O(\log \log n) additional bits of memory per node. This improved upon the previous best known competitive ratio, which was O(\log n). Structure Tango trees work by partitioning a binary search tree into a set of ''preferred paths'', which are themselves stored in auxiliary trees (so the tango tree is represented as a tree of trees). Reference tree To construct a tango tree, we simulate a complete binary search tree called the ''reference tree'', which is simply a traditional binary search tree containing all the elements. This tree never shows up in the actual implementation, but is the conceptual basis behind the following pieces of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Search Tree
In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a Rooted tree, rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree. The time complexity of operations on the binary search tree is Time complexity#Linear time, linear with respect to the height of the tree. Binary search trees allow Binary search algorithm, binary search for fast lookup, addition, and removal of data items. Since the nodes in a BST are laid out so that each comparison skips about half of the remaining tree, the lookup performance is proportional to that of binary logarithm. BSTs were devised in the 1960s for the problem of efficient storage of labeled data and are attributed to Conway Berners-Lee and David_Wheeler_(computer_scientist), David Wheeler. The performance of a binary search tree is dependent on the order of insertion of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Preferred Paths
Preferred may refer to: *Chase Sapphire Preferred, a credit card *Preferred frame, in physics, a special hypothetical frame of reference *Preferred number, standard guidelines for choosing exact product dimensions within a given set of constraints *Preferred stock, a class of stock See also *Preference In psychology, economics and philosophy, preference is a technical term usually used in relation to choosing between alternatives. For example, someone prefers A over B if they would rather choose A than B. Preferences are central to decision the ...
{{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tree (data Structure)
In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, except for the ''root'' node, which has no parent (i.e., the root node as the top-most node in the tree hierarchy). These constraints mean there are no cycles or "loops" (no node can be its own ancestor), and also that each child can be treated like the root node of its own subtree, making recursion a useful technique for tree traversal. In contrast to linear data structures, many trees cannot be represented by relationships between neighboring nodes (parent and children nodes of a node under consideration, if they exist) in a single straight line (called edge or link between two adjacent nodes). Binary trees are a commonly used type, which constrain the number of children for each parent to at most two. Whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Red–black Tree
In computer science, a red–black tree is a self-balancing binary search tree data structure noted for fast storage and retrieval of ordered information. The nodes in a red-black tree hold an extra "color" bit, often drawn as red and black, which help ensure that the tree is always approximately balanced. When the tree is modified, the new tree is rearranged and "repainted" to restore the coloring properties that constrain how unbalanced the tree can become in the worst case. The properties are designed such that this rearranging and recoloring can be performed efficiently. The (re-)balancing is not perfect, but guarantees searching in O(\log n) time, where n is the number of entries in the tree. The insert and delete operations, along with tree rearrangement and recoloring, also execute in O(\log n) time. Tracking the color of each node requires only one bit of information per node because there are only two colors (due to memory alignment present in some programming languag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optimal Binary Search Tree
In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, is a binary search tree which provides the smallest possible search time (or Expected value, expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic. In the static optimality problem, the tree cannot be modified after it has been constructed. In this case, there exists some particular layout of the nodes of the tree which provides the smallest expected search time for the given access probabilities. Various algorithms exist to construct or approximate the statically optimal tree given the information on the access probabilities of the elements. In the dynamic optimality problem, the tree can be modified at any time, typically by permitting tree rotations. The tree is considered to have a cursor starting at the root which it can move or use to perform modifications. In this c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Splay Tree
A splay tree is a binary search tree with the additional property that recently accessed elements are quick to access again. Like self-balancing binary search trees, a splay tree performs basic operations such as insertion, look-up and removal in big O notation, O(log ''n'') amortized analysis, amortized time. For random access patterns drawn from a non-uniform random distribution, their amortized time can be faster than logarithmic, proportional to the Entropy (information theory), entropy of the access pattern. For many patterns of non-random operations, also, splay trees can take better than logarithmic time, without requiring advance knowledge of the pattern. According to the unproven dynamic optimality conjecture, their performance on all access patterns is within a constant factor of the best possible performance that could be achieved by any other self-adjusting binary search tree, even one selected to fit that pattern. The splay tree was invented by Daniel Sleator and Rob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Asymptotic Analysis
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing Limit (mathematics), limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Red–black Tree
In computer science, a red–black tree is a self-balancing binary search tree data structure noted for fast storage and retrieval of ordered information. The nodes in a red-black tree hold an extra "color" bit, often drawn as red and black, which help ensure that the tree is always approximately balanced. When the tree is modified, the new tree is rearranged and "repainted" to restore the coloring properties that constrain how unbalanced the tree can become in the worst case. The properties are designed such that this rearranging and recoloring can be performed efficiently. The (re-)balancing is not perfect, but guarantees searching in O(\log n) time, where n is the number of entries in the tree. The insert and delete operations, along with tree rearrangement and recoloring, also execute in O(\log n) time. Tracking the color of each node requires only one bit of information per node because there are only two colors (due to memory alignment present in some programming languag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Balanced Binary Search Tree
In computer science, a self-balancing binary search tree (BST) is any node-based binary search tree that automatically keeps its height (maximal number of levels below the root) small in the face of arbitrary item insertions and deletions.Donald Knuth. ''The Art of Computer Programming'', Volume 3: ''Sorting and Searching'', Second Edition. Addison-Wesley, 1998. . Section 6.2.3: Balanced Trees, pp.458–481. These operations when designed for a self-balancing binary search tree, contain precautionary measures against boundlessly increasing tree height, so that these abstract data structures receive the attribute "self-balancing". For height-balanced binary trees, the height is defined to be logarithmic O(\log n) in the number n of items. This is the case for many binary search trees, such as AVL trees and red–black trees. Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items. Self-balancin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Recursion
Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function (mathematics), function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references can occur. A process that exhibits recursion is ''recursive''. Video feedback displays recursive images, as does an infinity mirror. Formal definitions In mathematics and computer science, a class of objects or methods exhibits recursive behavior when it can be defined by two properties: * A simple ''base case'' (or cases) — a terminating scenario that does not use recursion to produce an answer * A ''recursive step'' — a set of rules that reduce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subtree
In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected Node (computer science), nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, except for the ''root'' node, which has no parent (i.e., the root node as the top-most node in the tree hierarchy). These constraints mean there are no cycles or "loops" (no node can be its own ancestor), and also that each child can be treated like the root node of its own subtree, making recursion a useful technique for tree traversal. In contrast to linear data structures, many trees cannot be represented by relationships between neighboring nodes (parent and children nodes of a node under consideration, if they exist) in a single straight line (called edge or link between two adjacent nodes). Binary trees are a commonly used type, which constrain the number of children for each paren ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-balancing Binary Search Tree
In computer science, a self-balancing binary search tree (BST) is any node-based binary search tree that automatically keeps its height (maximal number of levels below the root) small in the face of arbitrary item insertions and deletions.Donald Knuth. '' The Art of Computer Programming'', Volume 3: ''Sorting and Searching'', Second Edition. Addison-Wesley, 1998. . Section 6.2.3: Balanced Trees, pp.458–481. These operations when designed for a self-balancing binary search tree, contain precautionary measures against boundlessly increasing tree height, so that these abstract data structures receive the attribute "self-balancing". For height-balanced binary trees, the height is defined to be logarithmic O(\log n) in the number n of items. This is the case for many binary search trees, such as AVL trees and red–black trees. Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items. Self-bal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]