Symmetric Set
In mathematics, a nonempty subset of a group is said to be symmetric if it contains the inverses of all of its elements. Definition In set notation a subset S of a group G is called if whenever s \in S then the inverse of s also belongs to S. So if G is written multiplicatively then S is symmetric if and only if S = S^ where S^ := \left\. If G is written additively then S is symmetric if and only if S = - S where - S := \. If S is a subset of a vector space then S is said to be a if it is symmetric with respect to the additive group structure of the vector space; that is, if S = - S, which happens if and only if - S \subseteq S. The of a subset S is the smallest symmetric set containing S, and it is equal to S \cup - S. The largest symmetric set contained in S is S \cap - S. Sufficient conditions Arbitrary unions and intersections of symmetric sets are symmetric. Any vector subspace in a vector space is a symmetric set. Examples In \R, examples of symmetric ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Inverse Element
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is a right inverse of . (An identity element is an element such that and for all and for which the left-hand sides are defined.) When the operation is associative, if an element has both a left inverse and a right inverse, then these two inverses are equal and unique; they are called the ''inverse element'' or simply the ''inverse''. Often an adjective is added for specifying the operation, such as in additive inverse, multiplicative inverse, and functional inverse. In this case (associative operation), an invertible element is an element that has an inverse. In a ring, an ''invertible element'', also called a unit, is an element that is invertible under multiplication (this is not ambiguous, as every element is invertible under ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Set-builder Notation
In mathematics and more specifically in set theory, set-builder notation is a notation for specifying a set by a property that characterizes its members. Specifying sets by member properties is allowed by the axiom schema of specification. This is also known as set comprehension and set abstraction. Sets defined by a predicate Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to ''true'' for an element of the set, and ''false'' otherwise. In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate. Thus there is a variable on the left of the separator, and a rule on the right of it. These three parts are contained in curly brackets: :\ or :\. The vertical bar (or colon) is a separator that can be read as "such that", "for which", or "with the property that". The formula is said to be the ''rule'' or the ''predicate''. All values of for which ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called scalar (mathematics), ''scalars''. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. Real vector spaces and complex vector spaces are kinds of vector spaces based on different kinds of scalars: real numbers and complex numbers. Scalars can also be, more generally, elements of any field (mathematics), field. Vector spaces generalize Euclidean vectors, which allow modeling of Physical quantity, physical quantities (such as forces and velocity) that have not only a Magnitude (mathematics), magnitude, but also a Orientation (geometry), direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix (mathematics), matrices, which ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Additive Group
An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structures equipped with several operations for specifying the structure obtained by forgetting the other operations. Examples include the ''additive group'' of the integers, of a vector space and of a ring. This is particularly useful with rings and fields to distinguish the additive underlying group from the multiplicative group of the invertible element In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...s. In older terminology, an additive subgroup of a ring has also been known as a ''modul'' or ''module'' (not to be confused with a module). ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Union (set Theory)
In set theory, the union (denoted by ∪) of a collection of Set (mathematics), sets is the set of all element (set theory), elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of Zero, zero () sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the List of mathematical symbols, table of mathematical symbols. Binary union The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In set-builder notation, : A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime numbers and the set of even numbers , because 9 is neither prime nor even. Sets cannot ha ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Intersection (set Theory)
In set theory, the intersection of two Set (mathematics), sets A and B, denoted by A \cap B, is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A. Notation and terminology Intersection is written using the symbol "\cap" between the terms; that is, in infix notation. For example: \\cap\=\ \\cap\=\varnothing \Z\cap\N=\N \\cap\N=\ The intersection of more than two sets (generalized intersection) can be written as: \bigcap_^n A_i which is similar to capital-sigma notation. For an explanation of the symbols used in this article, refer to the table of mathematical symbols. Definition The intersection of two sets A and B, denoted by A \cap B, is the set of all objects that are members of both the sets A and B. In symbols: A \cap B = \. That is, x is an element of the intersection A \cap B if and only if x is both an element of A and an element of B. For example: * The intersection of the sets and is . * The n ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Linear Subspace
In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a ''function (mathematics), function'' (or ''mapping (mathematics), mapping''); * linearity of a ''polynomial''. An example of a linear function is the function defined by f(x)=(ax,bx) that maps the real line to a line in the Euclidean plane R2 that passes through the origin. An example of a linear polynomial in the variables X, Y and Z is aX+bY+cZ+d. Linearity of a mapping is closely related to ''Proportionality (mathematics), proportionality''. Examples in physics include the linear relationship of voltage and Electric current, current in an electrical conductor (Ohm's law), and the relationship of mass and weight. By contrast, more complicated relationships, such as between velocity and kinetic energy, are ''Nonlinear system, nonlinear''. Generalized for functions in more than one dimension (mathematics), dimension, linearity means the property of a function of b ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Balanced Set
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space (over a field \mathbb with an absolute value function , \cdot , ) is a set S such that a S \subseteq S for all scalars a satisfying , a, \leq 1. The balanced hull or balanced envelope of a set S is the smallest balanced set containing S. The balanced core of a set S is the largest balanced set contained in S. Balanced sets are ubiquitous in functional analysis because every neighborhood of the origin in every topological vector space (TVS) contains a balanced neighborhood of the origin and every convex neighborhood of the origin contains a balanced convex neighborhood of the origin (even if the TVS is not locally convex). This neighborhood can also be chosen to be an open set or, alternatively, a closed set. Definition Let X be a vector space over the field \mathbb of real or complex numbers. Notation If S is a set, a is a scalar, and B \subseteq \mathbb then let a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |