HOME





Switching Loop
A switching loop or bridge loop occurs in computer networks when there is more than one layer 2 path between two endpoints (e.g. multiple connections between two network switches or two ports on the same switch connected to each other). The loop creates broadcast storms as broadcasts and multicasts are forwarded by switches out every port, the switch or switches will repeatedly rebroadcast the broadcast messages flooding the network. Since the layer-2 header does not include a time to live (TTL) field, if a frame is sent into a looped topology, it can loop forever. A physical topology that contains switching or bridge loops is attractive for redundancy reasons, yet a switched network must not have loops. The solution is to allow physical loops, but create a loop-free logical topology using link aggregation, Shortest Path Bridging, Spanning Tree Protocol or TRILL on the network switches. Broadcasts In the case of broadcast packets over a switching loop, the situation may deve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Network
A computer network is a collection of communicating computers and other devices, such as printers and smart phones. In order to communicate, the computers and devices must be connected by wired media like copper cables, optical fibers, or by wireless communication. The devices may be connected in a variety of network topologies. In order to communicate over the network, computers use agreed-on rules, called communication protocols, over whatever medium is used. The computer network can include personal computers, Server (computing), servers, networking hardware, or other specialized or general-purpose Host (network), hosts. They are identified by network addresses and may have hostnames. Hostnames serve as memorable labels for the nodes and are rarely changed after initial assignment. Network addresses serve for locating and identifying the nodes by communication protocols such as the Internet Protocol. Computer networks may be classified by many criteria, including the tr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Broadcast Storm
A broadcast storm or broadcast radiation is the accumulation of broadcast and multicast traffic on a computer network. Extreme amounts of broadcast traffic constitute a ''broadcast storm''. It can consume sufficient network resources so as to render the network unable to transport normal traffic. A packet that induces such a storm is occasionally nicknamed a Chernobyl packet. Causes Most commonly the cause is a switching loop in the Ethernet network topology (i.e. two or more paths exist between switches). A simple example is both ends of a single Ethernet patch cable connected to a switch. As broadcasts and multicasts are forwarded by switches out of every port, the switch or switches will repeatedly rebroadcast broadcast messages and flood the network. Since the layer-2 header does not support a time to live (TTL) value, if a frame is sent into a looped topology, it can loop forever. In some cases, a broadcast storm can be instigated for the purpose of a denial of service (D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ethernet Ring Protection Switching
Ethernet Ring Protection Switching (ERPS) is an effort at ITU-T under G.8032 Recommendation to provide sub-50ms protection and recovery switching for Ethernet traffic in a ring topology and at the same time ensuring that there are no loops formed at the Ethernet layer. This ITU-T specification is directly based on and derived from the Ethernet Automatic Protection Switching technology developed and patented by Extreme Networks. G.8032v1 supported a single ring topology and G.8032v2 supports multiple rings/ladder topology. Overview ERPS specifies protection switching mechanisms and a protocol for Ethernet layer network (ETH) rings. Ethernet Rings can provide wide-area multipoint connectivity more economically due to their reduced number of links. The mechanisms and protocol defined in this Recommendation achieve highly reliable and stable protection; and never form loops, which would fatally affect network operation and service availability. Each Ethernet Ring Node is connected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Network
A ring network is a network topology in which each node connects to exactly two other nodes, forming a single continuous pathway for signals through each node – a ring. Data travels from node to node, with each node along the way handling every packet. Rings can be unidirectional, with all traffic travelling either clockwise or anticlockwise around the ring, or bidirectional (as in SONET/SDH). Because a unidirectional ring topology provides only one pathway between any two nodes, unidirectional ring networks may be disrupted by the failure of a single link. A node failure or cable break might isolate every node attached to the ring. In response, some ring networks add a "counter-rotating ring" (C-Ring) to form a redundant topology: in the event of a break, data are wrapped back onto the complementary ring before reaching the end of the cable, maintaining a path to every node along the resulting C-Ring. Such "dual ring" networks include the ITU-T's PSTN telephony systems networ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Layer-3
In the seven-layer OSI model of computer networking, the network layer is layer 3. The network layer is responsible for packet forwarding including routing through intermediate routers. Functions The network layer provides the means of transferring variable-length network packets from a source to a destination host via one or more networks. Within the service layering semantics of the OSI (Open Systems Interconnection) network architecture, the network layer responds to service requests from the transport layer and issues service requests to the data link layer. Functions of the network layer include: ; Connectionless communication : For example, Internet Protocol is connectionless, in that a data packet can travel from a sender to a recipient without the recipient having to send an acknowledgement. Connection-oriented protocols exist at other, higher layers of the OSI model. ; Host addressing :Every host in the network must have a unique address that determines where it is. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Routing Loop
A routing loop is a common problem with various types of networks, particularly computer networks. They are formed when an error occurs in the operation of the routing algorithm, and as a result, in a group of nodes, the path to a particular destination forms a loop. In the simplest version, a routing loop of size two, node A thinks that the path to some destination (call it C) is through its neighbouring node, node B. At the same time, node B thinks that the path to C starts at node A. Thus, whenever traffic for C arrives at either A or B, it will loop endlessly between A and B, unless some mechanism exists to prevent that behaviour. How a routing loop can form For example, in this illustration, node A is transmitting data to node C via node B. If the link between nodes B and C goes down and B has not yet informed node A about the breakage, node A transmits the data to node B assuming that the link A-B-C is operational and of lowest cost. Node B knows of the broken link and tri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Call Stack
In computer science, a call stack is a Stack (abstract data type), stack data structure that stores information about the active subroutines and block (programming), inline blocks of a computer program. This type of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to simply the "stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages. Many computer instruction sets provide special instructions for manipulating stacks. A call stack is used for several related purposes, but the main reason for having one is to keep track of the point to which each active subroutine should return control when it finishes executing. An active subroutine is one that has been called, but is yet to complete execution, after which control should be handed back to the point of call. Such activatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Media Access Control
In IEEE 802 LAN/MAN standards, the medium access control (MAC), also called media access control, is the layer that controls the hardware responsible for interaction with the wired (electrical or optical) or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link (i.e. EtherType, 802.1Q VLAN tag etc), while the MAC provides flow control and multiplexing for the transmission medium. These two sublayers together correspond to layer 2 of the OSI model. For compatibility reasons, LLC is optional for implementations of IEEE 802.3 (the frames are then "raw"), but compulsory for implementations of other IEEE 802 physical layer standards. Within the hierarchy of the OSI model and IEEE 802 standards, the MAC sublayer provides a control abstraction of the physical layer such that the complexities of physical link control are invisible to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Full Duplex
A duplex communication system is a point-to-point system composed of two or more connected parties or devices that can communicate with one another in both directions. Duplex systems are employed in many communications networks, either to allow for simultaneous communication in both directions between two connected parties or to provide a reverse path for the monitoring and remote adjustment of equipment in the field. There are two types of duplex communication systems: full-duplex (FDX) and half-duplex (HDX). In a full-duplex system, both parties can communicate with each other simultaneously. An example of a full-duplex device is plain old telephone service; the parties at both ends of a call can speak and be heard by the other party simultaneously. The earphone reproduces the speech of the remote party as the microphone transmits the speech of the local party. There is a two-way communication channel between them, or more strictly speaking, there are two communication channel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Node (networking)
In Computer network, networking, a node (, ‘knot’) is either a redistribution point or a communication endpoint within telecommunication networks. A physical network node is an electronic device that is attached to a network, and is capable of creating, receiving, or transmitting information over a communication channel. In data communication, a physical network node may either be data communication equipment (such as a modem, Network hub, hub, Network bridge, bridge or Network switch, switch) or data terminal equipment (such as a digital telephone handset, a printer or a host computer). A Passivity (engineering), passive distribution point such as a distribution frame or patch panel is not a node. Computer networks In data communication, a physical network node may either be data communication equipment (DCE) such as a modem, Network hub, hub, Network bridge, bridge or Network switch, switch; or data terminal equipment (DTE) such as a digital telephone handset, a printe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TRILL
TRILL (Transparent Interconnection of Lots of Links) is a networking protocol for optimizing bandwidth and resilience in Ethernet networks, implemented by devices called TRILL switches. TRILL combines techniques from bridging and routing, and is the application of link-state routing to the VLAN-aware customer-bridging problem. Routing bridges (RBridges) are compatible with, and can incrementally replace, previous IEEE 802.1 customer bridges. TRILL Switches are also compatible with IPv4 and IPv6, routers and end systems. They are invisible to current IP routers, and like conventional routers, RBridges terminate the broadcast, unknown-unicast and multicast traffic of DIX Ethernet and the frames of IEEE 802.2 LLC including the bridge protocol data units of the Spanning Tree Protocol. TRILL was designed as a successor to the Spanning Tree Protocol, both having been created by the same person, Radia Perlman. The catalyst for TRILL was an event at Beth Israel Deaconess Medi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Layer 2
The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer. The data link layer is concerned with local delivery of frames between nodes on the same level of the network. Data-link frames, as these protocol data units are called, do not cross the boundaries of a local area network. Inter-network routing and global addressing are higher-layer functions, allowing data-link protocols to focus on local delivery, addressing, and media arbitration. In this way, the data link layer is analogous to a neighborhood traffic cop; it endeavors to arbitrate between parties contending for access to a medium, without con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]